AD-753 115

SUMMARY OF THE SYSTEM, SUPPORT, AND
SPECIAL-PURPOSE SOFTWARE USED BY THE
SANGUINE SIMULATION FACILITY

Ira Richer, et al

Massachusetts Institute of Technology

Prepared for:

Electronic Systems Division
Department of the Navy

18 September 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Sp-ingfield Va. 22151

Technical Note 1972-31

ADY53115

I. Richer

Summary of the System, Support, D. A. McNaill

and Special-Purpose Software
Used by the

Sanguine Simulation: Facility

i8 Scotember 1972

Prepared for the Department of the Navy
under Electroaic Systems Divimiun Contract F19623.73-C-0002 by

Lincoln Laboratory

© MASSACHUSETTS INSTITUTE OF TECHNOLOCY

Foovsaton, Masswmn serys

———— UNCLASETIED
_ Sscedty Clansificatize o .

' MVLEQT D A0 LT A O
TNty CalgI®-t . T, ¢ . P s tt0 et Do onte od when the overall repest is clessified)
r- N T s S —— e ne ———
. Wit o < sevl ¢ (Corporate authos) 28. REFCRT SECURITY CLASSIPICATION
Unclassified
Lincoln Laboratory, M.L.T. 5. ORCUP
None

3. REPORT TITLE

Summary of the System, Support, and Special-Purpose Software Used by the Sanguine Simulation Facility

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Note
3. AUTHOR(S) (Last name, firet name, initial)

Richer, Ira and McNeill, Dale A.

7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

6. REPORT DATE
18 September 1972 . 140 0
9s. ORIGINATOR'S REPORT NUMBERI(S)
. F19628-73 2
8a. CONTRACT OR GRANT No. F19628-73-C-000 Technical Note 197231
& PROJECT NoO. 1508A %5, OTHER REPORT NO(S) (Any other numbers thet may be

assigned thie report)
ESD-TR-72-234

c.
d,

10. AVAILABILITY/LiMITATION NOTICES Apmmoyed £or public releases distribution unlimited.

Diowibwtionlimitedto-bivbr-Govomment-agoncics-eniyrisnt-and-evelnetionr-236-5eptombor-1333vaGolssy
comestesfon-thio-desunmtntinust-bo-neiosnsdsoiib Dbl

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Nome Department of the Navy

13. ABSTRACT

A computer facility, consisting of a Varian 620/i digital computer,
associated peripherals, and extensive software, has been developed for
analyzing and simulating communications systems. The software includes
an operating system, general-purpose subroutines, and simulation pro-
grams. This report describes the software in detail, serving as a handbook
for potential users and as a guide for setting up similar iacilities.

14. KEY WORDS

kisi

Sanguine ELF receiver
Varian 620/i software

UNCLASSIFIED

p1f-1800 Security Classification

RN Sy ol ot e S e

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

SUMMARY OF TEE SYSTEM, SUPPORT,
\ AND SPECIAL-PURPOSE SOFTWARE
’ USED BY THE SANGUINE SIMULATION FACILITY

I. RICHER
D. A. McNEILL

Group 66

TECHNICAL NOTE 1972-31

18 SEPTEMBER 1972

Approved for public releases distribution unlimited,

0000000000000000000000000000¢
oik8 338 '~
H

2LARLIAR 2N 122 SRR

LEXINGTON MASSACHUSETTS

- The work reported in this document was performed at Lincoln Laboratory,
3 a center for research operated by Massachusetts Institute of Technnjogy.
1 The work was sponsored by the Department of the Navy under Air Force
Contract F19628-73-G-0002.

This report may be reproduced to satisfy needs of U.S. Govenmentagencies,

e
1n

ABSTRACT

A computer facility, consisting of a Varian 620/i digital computer,
associated peripherals, and extensive software, has been developed for
analyzing and simulating communication systems, The software includes
an operating system, general-purpose subroutines, and simulation programs.
This report describes the software in detail, serving as a handbock for
potential users and as a guide for setting up similar facilities,

Accepted for the Air Force
Nicholas A. Orsini, Lt. Col., USAF
Chief, Lincolu Laboratory Project Office

iii

Iv,

TABLE OF CONTENTS

INTRODUCTION

HARDWARE
COMPUTER OPERATING SYSTEM

G.
H.
I.
J

DEBUG Package and Magnetic-Tape Routines

Additions and Modifications to DEBUG Package and
Magnetic-Tape Routines

Text Editor
Additional Command for Text Editor - 'o'
Additional Command for Text Editor - 'x!'

Differences Between the Varian Supplied Assembler
and the Version Used at MIT/LL

Tape Splice
Tape Duplicate

Tape Copy
List/Dump

GENERAL-PURPOSE SUBROUTINES

moawrp

Plotting

Mean and Variance

Amplitude Probability Density
FFT Spectrum Averaging
Miscellaneous

SIMULA TION PROGRAMS

A,

B.

oo

DEBUG Commands for Use with the Simulation-
Control Program

Simulation Tape Editor
Simulation Tape Splicer
Miscellaneous

Preceding page blank

w W

53

69
76
77

78
82
84
86
87
89
L)
7
#19
121
123

124

124
127
130
132

I. INTRODUCTION

In the process of developing and analyzing an ELF receiver, a simula-
tion facility was developed consisting of a Varian 520/i compute}. associated
peripherals, and extensive software, The software was designed to permit

h rapid extraction, analysis, and display of pertinent data, Although our irtent
was to write software for the simulation project, the nature of the tasks
. encountered required that much general-purpuse software be written, This

software proves to be useful and adaptable to a wide variety of systems, both
within and outside the field of communications, This report is a collection
of memos describing the software in detail and is primarily written for those
people who plan to use it or to set up a similar simulation facility,

Except for the assembler and some of the mathematics subroutines,
all programs were written at MIT Lincoln Laboratory, The Varian assembler
has been extensively modified for our purposes, and the mathematics sub-
routines were thoroughly checked and corrected if necessary, All the software
is written in assembly language to minimize storage required by programs
and processing time,

Section II lists the major hardware components in the simulation
facility, Section III de ~ribes the computer operating system; update memos
indicating changes and additions to the programs follow the original memos.
Section IV details the general-purpose subroutines available, and Section V
describes the specialized routines developed for the simulation program.,

I. Richer wrote the DEBUG package, magnetic-tape routines, and the
texit editor, D, McNeill wrote the plotting package., Other major contribu-
tions are identified in the text. In addition, R, Teoste provided major
contributions toward the framework of the simulation programs, and both he

' and C. Cappello wrote many of the simulation support routines.

Praceding page blank

a)

b)

c)

d)

e)

f)

g)

h)

II, HARDWARE

The software was written specifically for the hardware configuration
at MIT Lincoln Laboratory, minor modifications may be necessary for
operation on other configuration. Listed below are the majvr components of
the simulation facility:

Varian 620/i digital computer with 32,768 (16-bit) words of
memory, one accumulator, two index registers, hardware
multiply and divide, direct-memory-access, "buffer interlace
controller” (to permit block data transfer between memory and
1/O devices), and 8 priority interrupts. Limitations on the
Varian hardware permit block data transfers between a
peripheral device and only the lower half of core; for that
reason, DEBUG and the tape handling routines are resident in
core from 315008-377778.

Teletype 1/O terminal (model KSR 35 - 10 cps).

Computek CRT graphic display 1/O terminal with a specially
built 16-bit parallel interface, The interface was modified to
accept a command so that hard copies can be obtained under
program control,

Tektronix hard copy unit (for copies of CRT displays).

4 PEC 9-track magnetic tape drives (25 ips, 800 bpi) operated
with one controller, Modifications were made to enable the
CPU to sense the tape drives online (see Section IlI-B),

Remex paper tape reader (300 cps).

Lincoln Laboratory built real-time clock (counts memory cycles
for timing programs),

Hewlett-Packard D/A converter and X-Y plotter. This is an
offline package for graphing data using paper tapes generated
by the plotting subroutines.

Listings are obtained from high speed line printers at MIT Lincoln
—aboratory's IBM 360 facility.

III, COMPUTER OPERATING SYSTEM
A, DEBUG Package and Magnetic-Tape Routines

1. Introduction

DEBUG, an "operating environment" for the Varian 620/i, greatly
facilitates the loading and dumping of programs (or data) from magnetic
tape, the examination and modification of the contents of registers*, and
the testing and correcting of programs. Some particularly useful features
of DEBUG are the ability to instruction-step through a program, the ability
to interrupt a program in execution, and the ability to type out the contents

of registers in a semi-symbolic format.

DEBUG is operated entirely from the teletype console. With DEBUG
in operation, the user should consider the teletype to be his computer con-
sole: any operation that could be performed from the central-processor con-
sole (except for setting sense switches) can now be performed from the
teletype. The purpose of DEBUG, in addition to providing many functions not
available at the central-processor console, is to simplify the usual console

operations,

There are two basic states of DEBUG: either a register is open or all
registers are closed (i.e., no register is open). By an "open register" we
mean the register currently being operated upon. Only one register can be
open at a time. An instruction to DEBUG is either an argument followed by
a command or just a command. The argument is an octal number (positive
or negative) which represents the contents of a register or the address of a
memory register. The command, always given by a single character, initiates
the desired action, (or causes an error message to be typed). For example,

the instruction
100,

means enter the argument 100 and prepare to accept the next argument.

* The term "register" is used to denote one of the core memory locations, one
of the five "hardware" registers (A, B, X, program counter, and overflow indi-
cator), or one of the special purpose registers provided by DEBUG (J, K, N, and T)

(Here the comma is the command; its function is explained‘ in more detail
below.) If all registers are closed, successive arguments are stored.in an .
argument list. The argument list always contains five arguments, and as
long as DEBUG is in control (i.e., so long as program execution or instrnc_-‘
tion-step are not initiated), the list remains intact unless it is specifically
altered by the user. In other words, DEBUG uses the most recently entered
value for each of the arguments in the list, and the user need enter only those
arguments that are to be changed. For example, with all registers closed
the four instructions

100,,, 400,

would enter into the arguinent list 100 for Argl and 400 for Arg4 and would
leave Arg2 and Arg3 intact.

The commands in DEBUG may be divided into three rough categories:
those associated with register examination/change, those associated with
program execution, and those associated with loading/dumping. In the next
three sections this grouping will be used. In Section 5 the commands are
summarized and listed in numerical order (according to their ASCII code).
Section 6 provides details of the semi-symbolic output mode.

2. Register Examination/Change Commands

In order to examine or to change the contents of a register, the register
must be open. As noted above, only one register may be opon at a time. Some
commands may be issued only when a register is open, some only when all
registers are closed, and some in either situation.

In all the examples, underlined characters are those typed by DEBUG.
In general, each line represents a distinct example; if, however, several
lines constitute one example, then the lines are bracketed toéether (as in the
second example under the /-command below). A carriage return and a line
feed, where not obvious, are denoted by c.r. and 1. f. respectively.

Command: P (for Program Counter)

Action:
Open and show the contents of the Program Counter (or P register);
error if a register is already open.

Examples;
P/123 The P register contains 1235 and is now
open.
P/123 P?_ Error if P is typed with a register open.

Commands: A (for A register)
B (for B register)
X (for X register)
V (for Overflow indicator) .
J (for J address)
K (for K address)
N (for Number of registers) .
T (for Trap address) ‘
Action;
Similar to that for the P-command.
The P, A, B, X, and V "hardware" registers provided under DEBUG
serve the same function as the corresponding registers that are pro-
vided at the actual computer console. The J,K, N, and T registers
are special-purpose registers provided by DEBUG; their use is explained

in Section 3 in connection with program execution and traps.

Command: / (slash)

Action;

If all registers are closed, open and show the contents of Argl; ii

a register is open, open and show the contents of the last-named register.

Yo 5 A At T ORI Wa) I VIRLL] B e, W O o] i i S i e gt L T G ik A s £ PRRDICR FIREISEAT R

Examples:
1000/1234 Open and show register 1000.
X/1000 / Open and show register X, then open and show
1000/1234 the contents of X (viz. register 1000).

Command: , (comma)

Action:
Enter the last argument (if any), and prepare to accept the next argument
or command. Commas are used to enter a sequence of arguments iuto

the argument list or into successive registers.

Examples:

1000, 2000, Argl is set to 1000, Arg2 is set to 2000,
and Arg3 may be typed.

1000/1_2_;5_3_5001. 5322,, The value 5001 is stored in location 1000,
5322 is stored in 1001, location 1002 is
left unchanged, and a value may be stored
into location 1003 {i.e. register 1003 is
now open).

1000/5001 1000, 2000/ "Inserting a patch": ", JMP, 2000" is inserted

;_gg)_/sp_gg_som, at locations 1000 and J001, and a patch pro-

gram is started at location 2000.

Command: c.r. {carriage return)

Action;
Enter the last argument and close the open register (if any). DEBUG
is now ready to accept Argl. When a carriage return is typed, DEBUG
also types out a line feed.

Examples:
1000/123 567,1234 c.r.1.f. 567 is stored in register 1000, and 1234
is stored in register 1001 which is then

closed.

4
)
=
o

1,2,3,4,c.r. 1. £,

Command: (space)

Action:
Enter the last argument.

Example:
1000/1234 555

Command: - (minus sign)

Action:
Set the current argument ne

Command: . (period)

Action:

The four arguments are entered in the
argument list. The c.r. is used here in
order to return to the start of the argument

list (if, e.g., an error was made in Argl).

If a space is typed after the 555, this value
is stored in register 1000, but register 1000

remains open.

gative.

Set the output mode to decimal, and if a register is open, type out the

contents of that register. The output mode remains decimal until changed

by an O or I command.
Examples:
10/100 . 64

10/123 100 .64 1000 .512

Register 10 contains 1008 = 6410.

1008 is stored in register 10 (by typing a
space). This value is typed ocut in decimal,
and it is changed to 10008, which is then also

typed out in decimal.

L TTA

AN e e T F el SR A PO L e AN L AR LA 2 R,

i1, 2.2, 33, The three arguments 11, 22, and 33 are
stored in the argument list, and the output
mode is sot to decimal. (Note that the period
may be typed at any time and, since no regis-
ter is open, has no effect other than to set
the output mode.)

Command: O (letter "O" for "Octal")

Action:
Set the output mode to octal, and if a register is open, type out the con-
tents of that register. The output mode remains octal until changed by

an]l or . command.

The value 177777
Example:
10/100 .64 ,-2 0177776 Register 10 contains 100, = 64,,, and

register 11 is set to -2 = 1777768.

g i8 always typed as -1 by DEBUG.

Command: I (for "Instruction")

Action:
Set the output mode to "instruction", and if a register is open, type out
the contents of that register. The output mode remains "instruction”
until changed by an O or a . command. The format and mnemonics
used in this mode are discussed in detail in Section 6.
Examples:
100/50010 I STA 10 Register 100 contains the instruction
", STA, 10".
2000/54077 1 STA 2100 Register 2000 contains the instruction
",STA, 2100" (addressing mode is relative
to P).

RN)
% kD

."s(
Fa

1 jads

Command: ; (semicolon)

Action:
If a register is open, enter the last argument and open and show the
contents of the next register; error if no register is open.

° Examples:
P /1000 100; P is set to 100 and A is opened.
. { A/177776 (The "hardware” registers are considered
to lie in the following order: P, A, B, X, V.)
100/5001¢ I STA :i0: (Note that since the JMP is a two-word
101/ JMP 1 ; instruction, the register following 101 is
103/ LDA 11 103.)

Command: : (colon)

Action:
If a register is open, enter the last argument and open and show the

contents of the previous register; error if no register open.

Example:
103/10011 I LDA 11 : (The "previous" register is always one les:
102/ HLT 1 : than the open register. Thus register 102
101/ JMP 1 : (which contains 1), when entered from 103,
100/ STA 10 is interpreted as a HLT instruction even

though it is actually the second word of the
JMP at location 101.)

Command;: F (for "Find")

Action:
. Search the registers from Argl to Arg2 for the value Arg3 masked
by Arg4. That is, type all registers between Argl and Arge (inclusive)
which agree with Arg3 in the bit positions marked by ones in Arg4. Thi
command may be given only if all registers are closed. If Arg4 = -1 :
1777778. the entire register must match Arg3. If Argd = 0, all regist

match, and a number of consecutive registers may be examined with
one instruction. Upon entry into DEBUG, and after a return from a
trap (see T), from an instruction step (see S), or from an interrupt
(see INT), the mask, Argé4, is set to 0. Typing (of output) may be
suppressed by enabling Sense Switch 1.

Examples:
100, 103, ,0,IF Registers 100 - 103 are typed out in
100/ STA 10 instruction mode:.
] 101/ JMP 1
103/ LDA 11 c.r. L. f.
0, 1000, 222, -1, F Registers 77 and 777 contain tae value
17/222 222.

777/222 c.r. 1. f.

0,1000,1111, 7777, Fc.r. 1.£f. No register from 0-1000 contains 1111
as the 12 least significant bits.

Command: W (for "Write")

Action;
Store Arg3 in all registers from Argl to Arg2 inclusive. This command
may be given only if all registers are closed.

Example:

0,100,-1,We. r. L. 1. -1 = 17777"18 is stored in 0-100.

Command: Any illegal character in DEBUG (e.g. "2Z","?", etc.)

Action;
Delete the argument being typed.
Examples:
123, 45,6022 67 The argument 66 is discarded (DEBUG)
responds by typing a question mark and

a blank) and 67 is entered in its place.

10

1000/ 1234 432 3__ ., 4321 Register 1000 is left unchanged, and 4321
is stored in 1001].

Misc. Example:

10,1000, -1, -1, F Search registers 10-1000 for -1.
77/-1 c.r. L. f. Register 77 contains -1.
100, We.r. 1. £. Write -1 into 100-1000. (Arg2 and Arg3

remain intact at 1000 and -1, respectively.)

3. Program Execution/Trap Commands and Program Interrupt

Described in this section are the commands used for stepping through a
program and for continuing execution of a program. Also outlined are the use
of the T register for setting a trap (instruction break) and the use of the J, K,
and N registers for specifying the type-out after a trap. An example illustrating
the use of these commands is given after the explanations. Finally, the program -

interrupt feature is discussed.
Command: S (For "Step")

Action:
Starting from the current value of P, step through the number of

instructions specified by Argl; if Argl is not specified (or if it is
specified as 0), step one instruction. All registers must be closed

when this command is issued.

After the Step command is completed, DEBUG types out the new value

of P, and returns control to the user (who may again perform any of

the DEBUG operations). Note that since all input arguments are octal,
the number of instruction-steps is the octal value of Argl. For example,

the command "10, S" will step through 10, = 810 instructions.

In performing an instruction-step, DEBUG places a ", JMPM, BREAK"
instruction immediately following the instruction to be executed. (The

routine BREAK in DEBUG restores the locations that were overwritten

11

-

by the JMPM instruction and then transfers control to the user after
the specified number of steps have been executed.) Therefore, a pro-

gram should never be stepped across an instruction that modifies

either of the two addresses following the instruction, e.g. *, STA, *+2%,

"INR, #+1";nor should a program be stepped across an instruction of

the form ", JAP, #+3". Also, stepping across an instruction that does

input from the teletype may give erronecus results.

Command: C (for "Continue®)

Action;

| Continue execution from the current value of P. If a trap bas been
set, execution stops the n-th time that the Trap is reached, where
n = Argl if Argl is specified, and n = 1 otherwise. All registers
must be closed when this command is issued

e Rbie: TN I05 Yo, TN AR S0

In order to set a trap at a particular instruction in a program, the

address of the instruction is entered into the trap register T. To

remove the trap, T is set to -1. When execution stops at a trap the

contents of a number of registers are typed and control is returned

to DEBUG. The user dictates, to a certain extent, the particular

registers that are typed by DEBUG after a trap. The rules are as

follows:

{ 1) The value of P is always typed.

! 2) Depending upon the value contained in the "Number register" N,
0 to 4 of the remaining "hardware" registers A, B, X, V may be

1 typed. Thus, if N = 0, none of these registers is typed; if

N =1, A istyped, if N = 2, A and B are typed, etc.

3) The contents of up to two memory registers may also be typed.
! This is especially convenient when the contents of certain locatioas
must be inspected each time a trap is reached. The J and K

registers hold the addresses of the memory registers to be typed,

12

v:ith the value -i signifying that no register is specified. (See
the fcllowing example.)

Several warnings apply to the use of traps. Clearly a trap should

not be set iu the middle of a two-word instruction, nor should one
. be set at an address if during execution the program jumps (branches)
to the trap address +1. In addition, if execution begins from the
trap address or from the trap address +1, then the program is
essentially instruction-stepped past trap address +] (and then a
", JMPM, BREAK" is placed at the trap address). Therefore, the
same cautions given for the Step command apply for traps if execu-

tion is to continue from the trap address. Finally, if a trap was set

and if program execution terminates without a retu.n to DEBUG,
then the locations (trap address) and (trap address +1) must be

My

returned to their original values in order to restore the program.
Example:

Assume that the following program is stored in memory:

Location Contents Symbolic Code
: 100 005001 TZA
101 050112 STA COUNT
102 040112 INR COUNT
]) 103 001001 JOF *+4
' 104 000107
105 001000 JMP #-3
106 000102
107 005000 NOP
z . 110 005000 NOP
111 000000 HLT
112 COUNT BSS 1
The following operations illustrate the use of the commands associated
with program execution.

13

ool ol o Sy

Command:

P/1000 100 c.r. L.f.

V_/_(l_c. r. 1.f.
3,Sc.r. L.f.
P/103c.r. L. 1.
112/1 c.rx. Lf.
T/-1 102¢c.r. L £.
I/-1 12

K/-1 c.r. L. £.
N/4 0 c.r.1.£

100, C

112/100
P/102 c.r. 1.1.

T/102 107c.r. L. f.
N/0 4c.r. L f.

Cc

112/100000

P/107

A/o

B/0

X/-1

V/0c.r. L. 1.
1/107 -lc.r. L f.

Action:

Set P register to entry point.
Make sure V = 0.
Step 3 instructions.

Check that COUNT = 1.

Set a trap at location 102.

Set J to the address of COUNT.

Leave K with no address specified.

At a trap, type no registers other than

P (and 112).

Continuve execution and break after the
trap is reached 1008 times. As expected,

COUNT = 1008.

Move the trap to location 107.

Show all registers at next trap-
Continue execution.

Location 107 is reached with COUNT =
77777 + 1. (The JOF instruction resets

the overflow indicator V.)

Remove the Trap.

"NT (special interrupt key)

Interrupt the program in execution, type the contents of P, A, B, X,
and V, and return control to DEBUG. The interrupt key is disabled
when DEBUG is in control (except during loading and dumping); the

key is enabled when program execution begins.

14

The primary use of the program-interrupt feature is to temporarily
halt the execution of a program that is suspected (or known) to contain
an error. For example, if a program seems to be looping indefinitely,
execution could be interrupted and the program could be instruction-
stepped until the error was located. If possible, the error could then
be corrected and execution could be re-initiated from the start or from

any intermediate point.

Load/Dump and Miscellaneous Commands

This group of commands allows for loading and dumping of programs
(or data) from magnetic tape, for rewinding a tape, and for re-starting DEBUG.

These commands may only be given with all registers closed.

Command: 1L (for "Load")

Action:
Load the program stored on tape unit = Argl, file number = Arg2.
DEBUG will respond with one of three messages:

1) If loading is successful, the entry point is stored in P and this
value is typed out. The C-command may then be used to initiate
execution.

2) If Argl represents an invalid tape unit (only 0 and 1 are valid),
or if there is a read error, the error message "TAPE" will be
issued.

3) If the specified file is not a binary program file (viz. the binary
output from the assembler or the output from a dump in DEBUG),
the message "FILE" will be typed.

In order to avoid possible errors, the trap register is reset to -1 when

the L.-command is given.

15

Example:
0,0,L Load from tape 0, file 0.
FILE c.r. 1.f. This file is not a program.
o,1,L Load from tape 0, file 1.
P/1353 c.r. L. 1. Load is complete; entry point is 1353.

Command: D (for "Dump")

Action:
Dump the block of registers from Argl to Arg2 inclusive, with entry
point set to Arg3; the output tape and file are specified in Arg4 and
Arg5, respectively. Only the last block in a binary file contains the
entry point, so Arg3 should be set to -1 for all but the last block,

Thus, if a program comprises several non-contiguous areas of core,
several D-commands must be given. After the last block is dumped
(with Arg3 = entry point 20) DEBUG types a carriage-return/line-
feed; after intermediate blocks, DEBUG types "--" to indicate that
the dump file is incomplete.

If Arg4 represents an invalid tape unit, or if there is a write error,
the mccezge "TAPE" is typed.

Example:
The following sequence will dump registers 100-200, 300-400, and
1000-2000 onto tape 1, file 2. The entry point is 111:

100. 200, -1, 1, 2,D-- 300, 400, D-- 1000, 2000, 111, D c.r. L. £.
Note that it is not necessary to re-enter Arg4 or Arg5 after the first
command. (Also, Arg3 need be entered only for the first and last
blocks.)

Command: R (for "Rewind")

Action:
Rewind the tape unit specified by Argl. (If Argl represents an invalid
unit, "TAPE" is typed.)

16

Rewinding should always be performed by DEBUG rather than manually
because certain parameters that define the tape position must be reset.

Command: Q (for "Quit")

~

Action:
Restart DEBUG. (The tapes are rewound, all buffer areas are cleared,
and DEBUG itself is initialized.)

17

5. Summary of DEBUG Commands

Command
c.r. (carriage return)

(space)

X £ < 3w UWVOZEHrR~"mmbODOw >

INT (special switch)
Any other character

Meaning. [Page reference]

Enter the last argument, close the open r)egister
(if any), and prepare to accept Argl. [4]

Enter the last argument. [5]

Enter the last argument and prepare to accept the
next argument or command. [4]

Argument is negative. [5]

Set output mode to decimal. [5]
Show the contents of. {3)

Octal digits for input arguments.)

Enter the last argument and open and show
previous register. [7]

Enter the last argument and cpen and show next
register. [7]

A register. [3,7]

B register. [3, 7]

Continue execution. [10]

Dump a block of core. [14]

Find a masked value. [7]

Set output mode to "instruction". [6,17]

J address (register to be typed after a trap). [3,10]
K address (register to be typed after a trap). (3, 10]
Load from tape. [13]

Number of registers to be typed after a trap. (3, 10]
Set output mode to octal. [6]

Program counter. [3, 7]

Restart DEBUG. [15])

Rewind a tape. [14]

Instruction step. [9]

Trap address. [3,10]

Overflow indicator. [3, 7]

Write a value iato memory. [8]

X register. [3, 7]

Program interrupt. [12]

Delete the last argument, [8]

18

6. Format and Mnemonics for "Instruction" Qutput Mode

The opcode mnemonics used in the "instruction" output mode are those
recognized by the assembler (with the four altered long-shift opcodes). A
double question mark (? ?) is used if the opcode is illegal. An asterisk (%)
following the opcode indicates that the address in the variable field is indirect,
Addresses and data in the variable field are always typed out in octal. Thus,
", LSRA, 11" means Logical-Shift-Right-A 118 = 910 places.

Register-change instructions are typed in the following format:

OPCODE SOURCE, DESTINATION
Opcode is either ZERO, MERG, INCR, COMP, or DECR, and Source and
Destination are the source registers and destination registers. For the
ZERO opcode, only destination registers are specified. Finally, if the
instruction is conditirnal on the setting of the overflow indicator, "OF" is

typed preceding the source registers.

Examples:
ZERO XA Zeroin X and A
DECR VA -lin A
MERG X,B Transfer X to B (TXB)
INCR X, XA Increment X and bring into A
INCR OF,A,A Increment A if overflow set (AOFA)

Two forms are used for the "conditional" instructions jump, jump and
mark, and execute. If no conditions are specified, then the mnemonic JMP
(or JMPM or XEC) is used; if conditions are specified, then the mnemonic
JIF (or JIFM or XIF) is used, and the conditions are typed in the variable
field preceding the address.

Mnemonic Condition
OF Overflow
AP A20
AN A<
AZ A=0

19

E’i Mnemonic Condition
5 BZ B=0
% XZ X=0
& S1 Sense Switch 1
ﬁq S2 Sense Switch 2
ﬁ S3 Sense Switch 3
Zxamples;
JMP 12345 Jump unconditionally.
! JIFM AZ,123 Jump and mark if A= 0.
XIF S1, AN, BZ, 456 Execute 456 if Sense Switch 1

and A< 0 and B=0.

R AT NI

20

. Shromnry o ——" e T ..
g AR AL 4ot GRSttt ol A T Y
E 2 £ ¥ ¥z e {34

e st e A AP e S T bibin b WA R PR e i

<

B B O L N O A R T TRy

MAGNETIC-TAPE ROUTINES

Two sets of magnetic-tape routines have been written for the Varian 620/i.

The file-handling routines provide a very convenient means for storing and re-

trieving data from tape. In using these routines the programmer need not con-
cern himself with the details of buffer allocation, tape positioning, and error
checking. The tape-handling routines are lower-level programs that permit

more flexible use of the tapes but that require much more bookkeeping by the

programmer.

Given below is the necessary programming information for the two sets
of routines. Information and specifications on the magnetic tape units and on

the method and format of data storage on tape can be found in Varian's "Magnetic

Tape Controller" manual.

1, File-Handling Routines

Presented in this section are the specifications and the calling procedures
for the following routines and system locations (all symbols are recognized by

the assembler):

$RDIR - read directory . .
$WDIR - write directory Directory routines
$OPEN - open file

$DATA - data to or from file Data-handling routines

$CLOS close file

$LOAD - load from tape Dynamic loader

glNEIgET: ;‘;‘;&152: tsay;setem }- Initialization routines

Routines for elimination and

$DOUT - eliminate DEBUG
restoration of part of system

$SIN - reload system

$RETN - used in error recovery
$SYS - starting address of system
$DEBUG- entry point for DEBUG

Memory registers holding
system addresses

21

— e ™ ¥ T i L, LTSI AN
a— —

Preceding the specifications are some introductory remarks and explanations
of the directory routines $RDIR and $WDIR and of the data-handling routines
$OPEN, $DATA, and $CLOS. The use of the remaining routines and of the

system locations is straightforward enough that they do not require explanations
beyond those given in the specifications.

Information on magnetic tape is arranged in files, with each file com-
prising one or more records. For example, a tape file could be the text for
a source-language program, a binary (assembled) program, or the output
data produced by a program. The user must keep track of the files on his
tapes. That is, he must maintain an up-to-date list of the contents of each

active file. Since the file-bandling routines perform all the necessary buffering

chores, the programmer need not be concerned with the nature or number of

A records in his files.

In general it is not possible to recover space on a tape. That is, if the

information written on a particular file is no longer needed, the space occupied
; by this file cannot be used for a new file even if the old and new files are of the
same length. The basic reason is that because of the relative inaccuracies in
positioning a tape, some of the useful data written beyond the old file may be
destroyed when the old file is overwritten. (Of course, the space occupied by
the last tape file may be recovered since there is nothing of interest beyond that
point.) It is frequently desirable to have a file that can be updated dynamically
(i.e. under program control) but that occupies a fixed position on the tape. This
file could, for example, contain a list of the active files on the tape. The routines
$RDIR and $WDIR permit the reading and writing of cuch a directory on tape.
These directory routines may be used only with ‘apes that have been properly
formatted. * The directory occupies one record (record 3, file 0) and is read
or written in one unbuffered operation. The first word of the directory is the

count - i. e., the number of words that follow. For example, a five-word

" Formatted tapes containing the system programs and a blank directory will
be provided to users of the Varian 620/i.

22

directory would occupy six memory registers, with the first register containing
the value 5. A typical program might read in the ¢;rectory, refer to the direc-
tory and perbaps modify its contents (and also its count), and then write it out.

If the directory is not modified, it need not be re-written.

The three routines that will be used most cften - $OPEN, SDATA. and
$CLOS - provide for data transfer to and from tape. $OPEN is used to "open”
a tape file - i.e., to allocate the necessary buffer space for forthcoming 1/o0
operations. Up to eight files may be open simultaneously. Certain information
must be given to $OPEN in order to specify the file to be opened: the tape unit,
the file number, whether the file is to be a read file (input from tape) or a write
file (output to tape), and, if a write file, the type of file (binary program, text,
etc.). This infiormation is passed to $OPEN in registers. Upon return, $OPEN
passes an identification word (ID) for the file. After a file bas been opened,
it is referred to by its ID. Thus, to store or retrieve the next item of data,
$DATA is called with ID as the only calling parameter. When operations on
a file are complete, $CLOS is called in order to free the buffer space (and to

write an end-of-file mark for a write file).

With these routines, as with any routines that perform tape 1/0, provision
is made in case tape errors occur. If the tape cierations are completed with-
out error, then the routine returns normally - to the irstruction following the
call. However, if more than a fized number of tape errors occur, ¥ the routine
returns to the error-return address that is specified with the call. An error
return can be either non-fatal or fatal. Recovery from a non-fatal error is
possible, provided that the program can tolerate the loss of one record of
data; recovery from a fatal error is not possible. The possible causes of an
error return are as follows {errors are fatal unless otherwise noted):

- Tape-positioning error (desired position cannot be found).
- Read error (i. e., position is correct, but a read error occurred).

This error is non-fatal.

>3
At present, up to four tape errors are permitted.

23

..... = s -

e e i KT T e L BRI e T e 3, .. o -
i PN ey PR

- Tape-unit failure.
- No buffers ava lable (during a call to $SOPEN).

(An error return from a write-file operation is always fatal.) Note again that
ir e-ror return results not from a single tape error, but from some ccrabina-

tion of the above errors.

In order to recover from a non-fatal error, the program should execute
the instruction ", JMP, $SRETN". (SRETW i3 a special register which contains
the proper address for a re-try of the 1I/O operation.) If recovery is not desired,
then the file must be closed by the program. After a fatal error - and in partic-
ular after an error in $CLOS itself - the file is always closed prior to the return.

In this case an additional call to $CLOS will not cause any errors.

AL g

Oatlined below is a typical instruction sequence that illustrates the use

TR

of the data-handling routines and the error recovery procedure.

PROG CALL $INIT Initialize
CALL $OPEN, ERROR Ope~ file

NEXT CALL $DATA, ERROR Next data item
JOF DONE End-of-file

Process data

JMP NEXT

ERROR JAN FATAL Recovery impossible
Issue message to show that
data has been lost
JMP $RETN Try to recover

24

o

FATAL .
- Issue appropriate message

DONE CALL $CLOS, ERROR Close file
JMP $DEBUG Return to DEBUG
END PROG

In this example, if recovery was not desired, then all error returns would
be to FATAL.

25

Specifications and Parameters for File-Handling Routines

Tape unit-
File number:

File type:

File ID:

Buffer size:

Buffer allocation:

Maximum no. buffers:

Allowed directory size:

Number of tape errors
for an error return:

Oor1l

0- 17‘.’78 inclusive

0 -binary program
1 ~-text

2 - 7 -unassigned

>0 {returned by $OPEN:; used in
calls to $DATA and $CLOS)

4008 = 256lo words

Backwards from ($SYS), highest
locations first. (See Core Map and
description of $SYS.)

8

1-400008 words (approximate), including

count. First word of directcry is the
count - i. e. the number of words follow-
ing. A blank directory contains 0 as its
first and only word.

26

3-word header

3758words ﬁ

/ Bit 13 ={

Tape Format and Record Format

Formatted tape

File 0, record 1: System programs (DEBUG, File-
Haxdling Routines, Tape-Handling
Routines).

File 0, record 2: Interrupt instructions and tape-routine
addresses.

File 0, record 3: Directory.

Files 1 and up: Available for use.

Format of records written by system

5 1312 10 9 0
header code e type file no.

recd. no. (2 1)

t—Used by file-handling routines
no. words
0 - read file

1 - write file

Bit 15 = Tape unit (0 or 1}

Records are fixed length.
This is the number of actual
data words in the record.

.SRDIR Read directory from tape.

$RDIR
Calling sequence: CALL ewmm » (ERROR RETURN)
Entry parameters: (B) = Starting location of directory.

(X) = Tape unit.
Return parameters: Nore. (Error return is always fatal.)
Registers used: A, OF
Remarks: The starting location of the directory contains

the directory count - i. e. the number of words
in the directory (excluding the count itself).
Thus, count = 0 signifies an empty directory,

and in general
final directory loc. = starting loc. + count.

These routines may only be used with formatted

tape.

28

— p— el e el e ————— e L T o PRSI, W

$OPEN

Calling sequence:

Entry parameters:

Return parameters:

Normal return -

Error return -

Registers used:

Open a file on magnetic tape and alioscate the
necessary buffer space.

CALL $OPEN, (ERROR RETURN)

(A) = File type (20) if a write file;
= -1 if a read file.

(B) = File number.

(X) = Tape unit.

(A) = File type.
(B)

Header code (see Record Format

information).
(X) = FileID £0.

(A) 20 if error is non-fatal;

= -1 if error is fatal (file is closed).
(B) Header code.
(X)

(OF) = Set if no buffers available. (This is a

ID word (unless no buffers available).

fatal error.)

A, Bv X, OF

29

$DATA
Calling sequence:

Entry parameters:

Return parameters:

Normal return -

Error return -

Registers used:

Store or retrieve data from a file.

CALL $DATA, (ERROR RETURN)

(A) = Data (if a write file).

(X) = File ID.

(A) = Data {(new data if a read file, original
data if a write file).

(OF) = Set if end-of-file on a read file;

Reset otherwise.

(A) 20 if error is non-fatal;

= -1 if error is fatal (file is closed).

A, OF

30

$CLOSE Close a file (or close all files) and free the

% appropriate buffer area.

Calling sequence: CALL $CLOS, (ERROR RETURN)

=] Entry parameters; (X) = File iD if a single file is to be closed;
: = 0 if all open files are to be closed.

'I Retuin parameters:

% Normal return - None.

3 Error return - (A) = -1 {ail errors fatal).

(X) = ID of file that caused error.

SIEAAY

(Thiv file has been closed.)

N

Registers used: OF (A and X ray be altered if an error return

occurs.)

ardipie

. D
ML R

Remarks: An error return can only occur for a write file,

If all files are tc be closed and an error return
occurs, X contains the ID of the first file that
H caused an error; an additional call to $CLOS,

3 again with (X) = 0, must then be made in order

to close the ren.aining open files.

40k

Sy e A

TR e

LT,

oo
Gy

TRV

¥

e
P

e

i

31

o~

i
H
!
.
,

$LOAD

Calling sequence:

Entry parameters:

Return parameters:

Normal return -

Error return -

Registers used:

Remarks:

Dynamic loader from magnetic tape.

CALL $LOAD, (ERROR RETURN)

{(B) = File number.
(X) = Tape unit.
(A) = Entry point.

(A) = 0, OF reset if tape error;
0, OF set if no buffers left;
= -1 if wrong file type (or if file is not

complete).
A, OF

$LOAD requires one buffer during execution.

32

R R R AR R

$INIT

Calling sequence:

Entry parameters:

Return parameters:

Registers used:

Remarks:

Initialize the tape system.

CALL $INIT

None.

None.

None.

$INIT rewinds the tapes, clears the buffers,
and initializes certain system parameters.

This routine should be called at the beginning

of any program that uses the tapes if the status

of tac tapes or of the buffers is not known.

$RESET Rewind a tape.

Calling sequence: CALL $RESET
Entry parameters: (X) = Tape unit.
Return parameters: (A) = 0.
; Registe °s used: A
Remrarxs: .n addition to rewinding a tape, $RESET resets

certain system parameters. When the file-
handling routines are being used, tape rewinds
should be performed only by $RESET or by
$INIT.

34

$DOUT Logically eliminate DEBUG from core.

Calling sequence: CALL $DOUT

Entry parameters; None.

Return parameters: None,

Registers used: A

Remarks: This routine is called if the space occupied
by DEBUG is required during execution of a

program. (With DEBUG eliminated, the program-
interrupt feature is of course disabled.) If $DOUT
is called, then as its final instruction, the program
in execution should reload DEBUG by calling $SIN.

35

S 3y

T A o P T T e T S P o D o

o

PRI AN

&

NG

i
e

m,.
WAy

kit

A%

oy

SRR LT}

B S A

e

0

P
A

.
%3

$SIN
Calling sequence:
Entry parameters:

Remarks:

Reload the system and transfer control t¢ DEBUC.

JMP $SIN
(X) = Tape unit.

$SIN is called as the final instruction of a
program that eliminated DEBUG. Note that this
routine is called with a JMP instruction. If no
tape errors occur, $SIN transfers control to
DEBUG. If a tape error does occur, $SIN halts
at the start of the bootstrap loader.

36

$RETN Location used in recovery from a non-fatal
error return.

Usage: IMP S$RETN

Remarks: Register X (which contains the file ID when
. the jump to the error return is made) must
contain the file ID. $RETN may be referenced
only after a non-fatal error.

&

5 RPN 1]
RPN TP Y, LT

i S

T o
A (‘

37

$SYS Register containing the starting address of the

system.
Typical usage: LDAE $SYS
Remarks: A program in execution may use all memory

registers up to, but not including, the address
held in $SYS. The program must allow space

for the greatest number of buffers that will be
used at any one time (one buffer for each open
file plus one additional buffer if $LOAD is called).
Buffers are allocated "backwards® from $SYS,
highest locations first. (See Core Map.) A

sample instruction sequence is

.
F
E;

LDAE $SYS 18t system address
3 SUBI N*0400 At most N files will
4 DAR be open simultaneously
‘ STA LAST Last usable address
; The location LAST now hoids the address of the

-

last (highest-numbered) memory register that

i may be used by the program.

$DEBUG Entry point for DEBUG.
Usage: JMP $DEBUG

Remarks: After completing execution, 21l programs should
return to DEBUG, either by a jump to $DEBUG
or, if DEBUG has been eliminated by $DOUT, by
a call to $SIN.

39

2. Tape-Handling Routines

In this section the specifications and calling procedares for the following
basic tape routines are given:

$RECD
$FILE - Tape positioning routines
SREW
$READ
$WRITE - Read/Write routines
$FMRK
$ECHK - Error checking routine
$UNIT - Sense tape unit ready
SDEV S 1

- Special int ti ti
SUDEV pecial interpretive routines

These routines give the programmer essentially complete control cver tape
operations. The read/write routines and the positioning routines (except

for SFILE) only initiate the requested action. If necessary the program should
check for completed action and for possible errors. In the specifications below,
the timing, if applicable, is given as the minimum numnber of cycies required
for the rcutine to initiate the appropriate action and then return. (Execution
will proceed in the minimum time if the referenced tape unit is in the ready
state and if, for a read or write operation, the BIC is also in the ready state.)
As with the file-handling routines, the routine-names are recognized by the
assembler. It should be noted that if the file-handling routines are not used,
then the space they occupy may be utilized. If this is done, then the contents
of $SYS are no longer meaningful (see the Core Map to obtain the address of
the last usable memory register), and the system should be reloaded (by

*
jumping to $SIN) after execution is completed.

“ The routine $SIN is located after the tape-handling routines, i.e., imme-
diately preceding the bootstrap loader.

40

AR S ‘A’Q:f;{.f

Gl Rad e

22 R340

1ea

s a1

$RECD
Calling sequence:

Entry parameters:

Return parameters:

Registers used:

Remarks:

Move tape a specified number of records.

CALL $RECD
(A) = Number of record;:
(A) > 0 - move forward (A) records;
(A) = 0 - no movement;
(A) < 0 - move backward -(A) records.
(X) = Tape unit.

(A) = 0 if move completed;
< 0 if beginning-of-tape encountered (during
a backward move); -(A) = number of

records left to move.

A

If the end-of-tape mark is reached, the tape is
rewound and forward motion is resumed. That
is, the forward move "wraps around" from the

end to the beginning of the tape.

When $RECD returns, the tape unit is performing
the motion associated with the last record of the

requested move.

41

ARNRE DAL Rk M D L BT Rl el Ul WA A T A o KNS bR G L A it AW AR R {&v’gi}}}% 5

s

. - e A ——— et 43 5

|

$SFILE

Calling se-aence:

Entry parameters:

Return parameters:

Registers used:

Remarks:

Move tape forward a specified number of filrs
or position tape at a specified file.

CALL S$FILE

(A) = Number of files:
(A) >0 - move forward (A) files;
(A) =0 - no movement;
(A) <0 - position tape at file number =

complement(A).
(X) = Tape unit.
(A) = 0.
A

No provision is made for a backward move
because the hardware associated with the tape
units cannot sense a fil® mark during backward
tape motion. If $FILE is called with (A) <0, the
tape is rewound and then advanced complement (A)
files. As with $RECD, the tape is considered to

wrap around from end to beginning.

42

$REW

Calling sequence:

Ertry parameters:

Return parameters:

Registers used:

Remarks:

Rewind a tape.

CALL $REW

(X) = Tape unit.

None.

None.

When $REW returns, either the tape unit is

ready at the load point or it is in the process

of rewinding.

43

$READ
$WRITE

Calling sejuence:

Entry parameters:

Return parameters:

Registers used:

Timing:

Remarks:

Read a record.
Write
$READ
CALL lewrITE
(A) = Final memory address.
(B) = Starting memory address.
(X) = Tape unit.
None.
None,

$READ - 50.75 cycles {minimum).
$WRITE - 57.75 cycles (minimum).

The contents of locations (B) to (A) inclusive
are filled ($READ) with data from the next
tape record, or they are written (§WRITE)
as the next record on the tape. To read a
record of unknown length, set (A) large

[e.g. (A) = ($SYS)-1] in the call to $READ,
and then call $ECHK to obtain the actual final

address.

44

$FMRK Write a file mark.

Calling sequence: CALL $FMRK

. Entry parameters: (X) = Tape unit.

Return parameters:; None.
£ 8

Al
b,

RIS

Registers used: None.

RETEY

L Timing: 49. 25 cycles (minimum).

; 45

ML

e
EEs

$ECHK
Calling sequence:
Entry parameters:

Return parameters:

Normal return -

Error return -

Registers used:

Timing:
Normal return -

Error return -

Remarks:

Check for errors (after $SREAD or $WRITE).

CALL $ECHK, (ERROR RETURN)

(X) = Tape unit.
(A) = -1 if operation was completed normally;
= Final memory location {20) if operation
terminated prematurely.
(A) = 0.
A

60. 75 cycles (minimum).

47.5 cycles (minimum).

After a normal return, the caller must check
whether A< 0 or A2 0 and must then take
appropriate action. If (A) 20, then A contains
the final memory location that was used in the
previous I/O operation - for example the last
location filled in $READ. After a read operation
an error return signifies a tape read error, and
after a write operation it signifies that the write-

enable ring is not present.

46

SHYEIIP

L

. o
feak s 44 05 W

e CER

IR

SR

&2

i

At

SO

$UNIT

Calling sequence:
Entry parameters:
Return p’arameters:
Registers used:
Timing:

Remarks:

Sense tape unit ready.

CALL $UNIT

(X) = Tape unit.

None.

None.

12. 25 cycles (minimum).

$UNIT does not return until the specified tape

unit is in the ready state.

47

L Eal e e L A 0 e b LR S AR (AN R SRR S AU LG R A SNy £/

SDEV

Calling sequence:

Entry parameters:

Return parameters:

Registers used:

Timing:

Remarks:

Store a device number into an instruction.

CALL $DEV, INSTRUCTION

or, equivalently,

CALL $DEV
INSTR

(X) = Device number: 0 < (X) < 7.

None (INSTRUCTION is altered).

None (See Remarks).

20 cycles.

$DEV is an interpretive routine that simplifies
programming if two or more of the same type
device are part of the computer system. Bits

0 - 2 (the device number) of INSTRUCTION are
masked out and replaced by bits 0 - 2 of register
X. The modified INSTRUCTION is set back at the
original location, and $DEV returns by jumping
to this location. ($DEV masks out bits 3 - 15 of
register X, and hence upon return these bits are
0.) For example, the following sequence tests
for end-of-tape on the unit number held in

location TAPE:

LDX TAPE Tape unit in X.
CALL $DEV Set unit no. in SEN instr.

SEN 0510, EOT Jump to EOT if end-of-tape.

48

$UDEV

Calling sequence:
Entry parameters:
Return parameters:
Registers used:

Timing:

Wait for tape unit to enter ready state and then
proceed as for $DEV.

CALL $UDEV,INSTRUCTICON
(X) = Tape unit = Device number.
None (INSTRUCTION is altered).
None {See Remarks under $DEV).

40. 25 cycles (minimum).

49

2y A fﬂ

ST LR PRy

vov—

v b At SR A B AT 0 NI e A A e XU P B LM ST RSN SR

a4 VLY

PRV SR,

COLD-START PROCEDURE

I. Tarn computer power on, enable memory, and press STEP and then
SYSTEM REZSET.

2. Turn power on for the teletype and magnetic-tape units.

3. Mount a formatted tape on unit 0 (or on unit 1 if the indicated changes are
made in the bootstrap loader), mount any tape on the other unit, and bring

each tape to its load point.

4. Enter the bootstrap loader:
{(a) Enable REPEAT.
(b) Set the U register to 54000 (STA relative to P).
(c) Set the P register to® Y7761.
(d) Enter a bootstrap instruction (see next page} into the A register.
(e) Press STEP to enter the instruction in memory.

(f) Repeat steps (d) and (e) until all bootstrap instructions are entered.
5. Set* (P) = Y7770, (U) = 0, (A) = Y7777, (B) = Y4000, and (X) = O.

6. Press RUN. If the system loads properly, DEBUG will begin execution.
If there is a tape error, execution will halt with (P) = Y27770. In this case,
rewind the tape, set A and B as in Step 5, and press SYSTEM RESET and
RUN in order to re-attempt the load.

o
bl

Y = 2 for 12K memory, Y = 3 for 16K memozy, etc.

50

BOOTSTRAP LOADER

Location Cantents Symbolic Code
Y7767 000000 HLT
Y7770 103220 OBR 020 Starting BIC location
Y7771 103121 OAR 0z1 Final BIC location
Y7172 107020 EXC 020 Enable BIC
Y7773 100010 EXC 010 Read a record
Y7774 101210 SEN 0210, $SIN When ready, call $SIN to
Y7775 0Y7740
Y7776 001000 JMP *-2 complete loading
Y7777 0Y7774
Set (P) = Y7770
Uy =0
(A) = Y7777
(B) = Y4000
X)=0

If the formatted tape is on unit 1, set X = 1 and change locations
Y7773 and Y7774 to 100011 and 101211, respectively.

Y = 2 for 12K memeosy, Y = 3 for 16K memory, etc.

51

CORE MAP
gctal address

0
interrupt instrcctions 17
Systein addresses
100

Available for

programs

s $
SR S

Tape buffers

5 ($SYS) - Y4000
3 DEBUG

‘ Y6400
File-handling routines

5 Y7500
i Tape-handling routines

i B load Y7770
§ ootstrap loader Y7777
{

i

If DEBUG is eliminated, ($SYS) = Y6400 and tape buffers are allocated
from this point.

Y = 2 for 12K memory, Y = 3 for 16K memory, etc.

52

R N e R S e R e R Rt L SR T R HEN M AT S A4

B. Additions and Modifications to DEBUG Package and Magnetic- Tape

Routines -
1. Introduction

A number of additions and modifications have been incorporated

into DEBUG and into the magnetic-tape routines. The following report provides
information on these changes. The next two sections detail the new features in
DEBUG and the modifications of the original DEBUG commands, with
Section IV giving an updated summary of all the DEBUG commands. Section V
describes the imodifications to tape routines; to the user, these modifications
appear minor, but they wzre necessary in order to accommodate four tape drives,
and they result in 2 more flexible system. The next section describes the sub-
routine $DIV which compensates for some hardware shortcomings of the Varian
626G /i DIVIDE instruction. Sections VII and VIII provide a revised Core Map and

a revised Gystem Loading Procedure.

2. New DEBUG Features

DEBUG may be operated from the CRT terminal or from the TTY.
When DEBUG is re-loaded from the system tape, operation always begins on
the TTY. The following command enables the user to switch between the

terminals.
Command: < ("less than" sign)

Action:
Switch operation of DEBUG to the other terminal. The message
"SWITCH" will be typed on the original terminal, and "CONTINUE"
will be typed on the new terminal. This command may be given only
at the left margin - i.e., only with all registers closed and with no

arguments entered.

When the cursor reaches the bottom of the CRT screen, the user
should erase the screen and re-position the cursor (by using the
PAGE key, or the HOME and ERASE keys). The Q-command from

53

the CRT {to restart DEBUG) erases the screen.

The following command can be helpful in debugging a2 program since it
sets the memory to a known state before loading programs.

Command: = (for "Equals 0%)

Action:
Store zero in all non-system memory locations (cf. Core Map given
in Section VII). This command may be given only at the lefi margin.

The following command enables 2 user to intersperse pertinent
comments with TTY or CRT output.

e

Command: * (asterisk)

Action:
Set DEBUG to accept a comment: DEBUG will echo back all
characters typed after the *, but it will take no action on the
characters. A carriage return restores DEBUG to its normal
mode of operation. This command may be given only at the left

margin.

The following command allows a block of core to be displayed com-
pactly on the CRT.

Command: G (for "Garbage")

Action:
Display in octal on the CRT the block of registers from Argl (mod
1008) to Arg2 inclusive. 4008 registers are displayed on one "page, "
and the PAGE key on the CRT terminal is used to display the next
4008 registers and to return to DEBUG after the final page is
examined. The display may be terminated prematurely be enabling
Sense Switch 1 and using the PAGE key. All registers must be

closed when this command is issued,

54

———

T L L O I T AT T Wl A e By O T | A A R R T R S PO R S TAT S AL B T LA DN R A ST AR LTS

Example:
1111,2222,G Display registers 1111-2222 inclusive.
The first page will actually show registers
1100-1477, the second page 1500-2077, and
the final page 2100-2477.

The contents of registers may be displayed as floating-point numbers
or as decimal numbers with a specified binary point. The following two
commands enable a user to select either of these modes. Information on the
format of typed numbers is given in the following section. (The Varian 620/i

manual gives details on the internal representation of floatirg-point numbers.)

Command: E (for "Exponent")

Action:
Set the mode to floating point. This command may be issued only

if all registers are closed.

Command: Z (for Z register)

Action:
Open and show the contents of the Z register - the binary-point

register. An error occurs if a register is already open.

The contents of the Z register represents the position of the binary
point of registers displayed in the decimal mode. If (Z) = 0, the
binary point is assumed to lie to the right of bit 0 and the value of
the register will be interpreted as an integer; in general, if (Z) = k,
for k positive or negative, the binary point is assumed to lie to the
right of bit k and the value is interpreted as an integer divided by

Zk (equivalent to the data format Bk as interpreted by the Assembler).

The Z register is always displayed as a decimal integer. A carriage

return closes the register and restores DEBUG to its former mode.

55

Example:*
0100/1000
Z/o._
.100/512.
z2/0. 2
100/128.0

Z/..Z_'_'2
100/2048.

Register 100 contains the value 1000

8
(z) = o.
1000, = 512, ,.
Set Z to 2.
- 2 _
1000, B2= 51210/2 = 128,
- 2, _
1000, B-2 = 512,,(2%) = 2048,

In order to facilitate communication between the user and the computer

during program execution, 2 special entry point, $PAUSE, has been created

in DEBUG. With the entry $PAUSE, a programmer can conveniently have

a message typed while entering DEBUG to permit parameters to be entered

or altered. Specifications for $PAUSE and an example of its usage ate

given below.

Calling Sequence:

Entry Parameters:

Return Parameters:

Registers Used:

Remarks:

CALL $PAUSE, (MESSAGE ADDRESS)
where (MESSAGE ADDRESS) is the address
of the text to be typed; the text must be
terminated by a location containing 0.

None

None

None

The $PAUSE entry to DEBUG saves registers,
types the text contained at MESSAGE ADDRESS,
types a carriage return, and then allows the user
to perform any of the DEBUG operations. To
resume program execution, the user types C (for

"Continue").

The symbol $PAUSE is recognized by the assembler.

*Underlined characters are those typed by DEBUG.

56

Example:
*In this program when the first call to $PAUSE is reached, MSGI
*will be typed. The user then enters the desired value of PARAM
*(in the appropriate mode), and types C to continue execution.
*When computations are finished, MSG2 will be typed and, after
*examining the results, the user may type C to rerun the program or
#Q to terminate executior and restart DEBUG.

AGAIN NULL Start of program

CALL $PAUSE, MSG1 Get parameter value
CALL $PAUSE, MSG2
JMP AGAIN
ORG 01000

PARAM BSS 1

MSG1 DA A 'ENTER PARAM VALUE AT LOG 10000

MSG2 DATA 'DONE. RESULTS AT LOC 2000',0

3. Modifications to Original DEBUG Commands

The most significant changes to DEBUG tiave been to permit
more flexibility in the display and in the entry of register values. The con-
tents of registers may be examined in any of four modes: octal, decimal

(with specified binary point), floating point, 1

or instruction. The mode may
be changed only when all registers are closed. With all registers closed,
input arguments are always octal values; with a register open, the input

mode is the same as the output mode (except for instruction mode, in which

1.I‘he routine that displays numbers in decimal and floating formats was
originally written by A, Griffiths,

57

case input is in octal). The following example illustrates this point:

0100/0_100 Set register 100 to 100,

.100/64. 100 1008=64lo; set register to 100, ..

0100/144 Register 100 now contains the octal value
144,

Decimal and floating-point numbers are always typed with a decimal point
by DEBUG. Decimal integers (i.e., (Z) = 0) are typed as full-precision
integers (i.e., with no fractional part). Non-integer decimal values

(i.e., (Z) # 0) and all floating-point values are shown to four significant
figures*, with exponential notation used if the value is less than 0. 001 or
greater than 9999, Decimal and floating-point arguments may be entered
into DEBUG in either decimal or exponential notation. For example, 31l of

the following input formats are equivalent:
1, 1,0, 1.00000, 1E0, 10E-1, 100.000E-2, .1E1, 0.999999
Note that it is not necessary to enter the decimal point,

The following minor modifications have also been incorporated in
DEBUG:

- When any of the registers T, P, J, K, or N are opened, the mocde

is set to octal and remains octal after the register is closed. (How-~
ever, when the value of P is shown by DEBUG at a trap - or after a
program interrupt or a program step - the mode used is the current
mode of DEBUG.) For example:

.A/100. 200 Set (A) to 200, .

P/1000 100 P shown in octal and set to 100g.

T/-1 101 Set trap.

N/4_1 Show only A after trap.

A/310 Mode is still octal,

.C Set mode to decimal and continue execution.

58

x5
2N
£
=
s
J
4
r
Es:

TS

PNRE AR S22 TS

Vg
R N 741

R ESK

iy

TN

LS M S F e S

DA

ST A e
ARSI AR Y

370
R

ox 4
RUTEEG

(0-9)

P/65. At trap, P and A are shown ir decimal.
A /200.
P/101 When open, P is shown in octal.

- If the space-bar is typed with a register open, DEBUG will display
the contents of the register. This feature is useful in checking

conversion accuracy. For example:

2/0. 12 Set binary point to 12.

.1000/0. .49019 .4902; With only 12-bit accuracy, the desired

1001/0. .62387 .6238 values are rounded as shown.

1100/ NOP 57777_STA* 777 Set 100 to the instruction, STA*,777, and
check that the desired instruction is

entered,

-The /-command cannot be given with a register open.

4, Summary of DEBUG Commands
Coramand: Meaning
c.r. (carriage return) Enter the last argument, close the open
register (if any), and prepare to accept
Argl,
(space) Enter the last argument; also, if register

open, display contents of register,
Comment to be typed.

Enter the last argument and prepare to
accept the next argument or command.

Argument is negative,
Set mode to decimal,
Show the contents of,

Digits for input arguments; only 0-7 for
octal input,

Enter the last argumeat and open and show
previous register.

Enter the last argument and open and show
next register.

Switch operation to other terminal,

59

beni

ot
RPN

o e A g B S it
2 s boaa s o

ey Sk

FATEIR

(008 AR Y SN
BRI PR

SN

“ " QMmO OwW»

o

2 r

NX =< <3020y o

INT (special switch)
Any other character

Set non-system core to 0.

A register.

B register.

Continue execution.

Dump a block of core.

Set mode to floating point.

1l ind a masked value.

Display a block of core on CRT,
Set mode to "instruction",

J address (register to be typed after -
a trap).

K address (register to be typed after
a trap).

Load from tape.

Number of registers to be typed after a
trap.

Set mode to octal,
Program counter,
Restart DEBUG.
Rewind a tape.
Instruction step.

Trap address.
Overflow indicator.
Write a value into memory.
X register,
Binary-point register.
Program interrupt,

Delete the last argument.

5. Modifications to Tape Routines

The tape routines have been re-written to handle up to four tape

drives (numbered 0- 3) from one controller*. The routines may be called

even if one (or more) of the drives is offline: if an operation is attempted

*Bits 14 and 15 in the header code word specify the tape-drive number,

60

on an offline drive, the routine will return and indicate that a tape error has

occurred.

The file-handling routines are vsed exactly as before. The tape-

handling routines have been modified as follows:

$ECHK

$DEV Deleted from zystem.

$UDEV

$CHK Check tape status,

$CONN Connect tape drive to controller.
$BIC Sense BIC ready.

The three new routines are described below. The remaining tape-handling
routines are used exactly as before; The new timing requirements for the

tape-handling routines are given in the table at the end of this section,

61

T e S, TS (BT

$CHK

Calling Sequence:
Entry Parameters:

Return Parameters:
Normal return
Special returns

Registers Used:

Timing.

Check status of a tape unit after any
tape operation.

CALIL. $CHK, EOT, EOF, ERROR

(X) = tape unit,

In sequence: (A) = -4

To EOT if end-of-tape encountered:
(A) = -1

To EOF if end-of-file encountered:
(A) = -2

To ERROR if any tape error:
(A) = -3 if parity or write-ring error;
(A) = -5 if tape is offline;
(A) = Final memory location (2 0) if
operation terminated prematurely
(e.g., last location filled by $READ).
A

See table.

62

$CONN Logically connect controller to a tape unit. ¥

Calling Sequence: CALL $CONN :

Entry Parameters: (X) = Tape unit. %

Return Parameters: None &

» Registers Used: None
Timing: See table, 3

. Remarks: All tape-handling routines - except $UNIT - ,l
call $CONN. Before actually connecting &

the controller ‘o the specified unit, $CONN i

senses and saves the error conditions of i

the drive currently connected. 3

Azt J

SILTe,
!

G

L2 g

¥

o e st A RS B P W
e eyt PR e A A A

5
b
4 1 ,;?
s 3
s
!
B i
i |
4 |
¥)
Sl Ll H

, 63

$BIC

Calling Sequence:
Entry Parameters:
Return Parameters:
Registers Used:

Timing:

Sense BIC ready.
CALL $BIC

None
None

None
See table.

64

Timing of Tape-Handling Routines

Routine
$READ
$WRITE
$FMRK
$CHK
$CONN
$UNIT
$BIC

65

Minimum No. Cycles

85.75
85.75
77.75
132.25 (normal return)
73.75
5.5

5.25

6. Divide Subroutine

The divide instruction on the Varian 620/3 will produce misleading
results if the dividend (numerator) is negative and an integral multiple of the
divisor (denominator). The routine described below*, $DIV, compensates
for the hardware shortcomings. and in addition provides a double-precision
quotient. If, however, the numerator is known to be positive, and if only

single-precision results are required, then $DIV need not be called.

$DIV Divide routine that compensates for
Varian 620/i hardware ideosyncracies.
Calling Sequence: CALL $DIV, DIVISOR
where DIVISOR contains the denominator.
Entry Parameters: (A), (8) = Numerator, double precision
Return Parameters: (A), (B) = Quotient, double precision B15

(i.e., the binary point is located to the
right of A-regster bit 0).

OF Set if overflow occurred

Reset otherwise

Registers Used: A,B,OF

won

Timing: Varies from 51 cycles to 75 cycles

’ depending upon sign and magnitude of
3 numerator and denominator. Average
; time ~ 67 cycles.

Remarks: If (numer. /denom.) 2 215 orif

; (numer, /denom.) < - 215, overflow
¥ occurs and the resulting quotient is
(meaningless,

The symbol $DIV is recognized by the
assembler,

*This routine was originally written by C. Cappello.

66

MG L ML AVAR IOV

bl

P N LS TE ES ARV A T

Wy)
¥

RN

R R R R

L
——

7. CORE MAP
gctal address

0
Interrupt instructions 20
System addresses
100
Available for
< programs <
DEBUG
36300
File-handling routines
37416
$DIV 37500
Tape-handling routines
37770
Bootstrap loader 40000
Available for
} programs (
77777

Because of shortcomings in the Varian hardware, the tape buffers
cannot be allocated in locations above 40000, Memory that is
available for programs is therefore split into two blocks.

If DEBUG is eliminated, ($SYS) = 36300 and tape buffers are allocated
from this point,

67

8. System Loading Procedure

1) If the file-handling routines are intact:

Set P/37740
x/3"
u/0

Turn TTY on

Press SYSTEM RESET
Run

2) If the Bootstrap Loader is intact:
Set P/37770
A /40000
B/31500
X/3"
U/104410"
Position the system tape at the load point.
Turn TTY on
Press SYSTEM RESET
RUN

3) To enter Bootstrap Loader:
Enable REPEAT

Set U /54000
P/37767
A /bootstrap instruction Repeat these operations
Press STEP } until all bootstrap instructions

are entered

Bootstrap Loader:

37767 /0 37774/101210
37770/103220 37775/37740
37771/103121 37776 /1000
37772/100020 37717/37174
37773/100010

“If the system tape is not on tape drive 3, then set X to the drive number of
system tape. In this case, when using the Bootstrap Loader, set U to 104210,
where z = 1 + drive number,

68

C. Text Editor

Text Editor for the Varian 620/i

The Text Editor facilitates the preparation and modification of source-
language programs or any body of text. The format and the repertoire of

commands are similar to those on the CMS editor.

In general, three files of text are in use during editing: an input file
from: magnetic tape, a core file that is kept in memory, and an output file
on magnetic tape. (If all text input originates from the teletype, then of
course no input file is used.) The core file comprises the actual text that
is available for examination and modification. The user should imagine
a "poinier" marking his position in this file. Editing is done on a line basis
the reference point being the current position of the pointer. Added to the
user's text are two null lines marking the top and the bottom of the file. The
line pointer may be positioned at the null top line (represented by "T"), but
this line cannot be delted, replaced, or moved. The pointer cannot be
positioned at the null bottom line; if the bottom of the file is encountered,

"B" is tvped, and the pointer is set to the last text line.
instructions to the Editor are given in one of the three forms

(iy C

(ii) Cn

(iii) Cstring
where C represents a command, n is a positive integer, and string represents
a sequence of characters. Most commands are given by a single character;
however, in order to minimize the possibility of a serious error, two-character
commands are used for restarting the Editor and for exiting from the Editor.
The integer n, if not specified, is ascigned the default value n=1, and the
symbol "#" isinterpreted as n==®. (For example, L# means in effect "load
as many lines as possible.") If an error is made in typing an instruction,

the character "@" may be used to delete the previous character, or the

69

bR

¥

T R T
E R, AN RS 0 Rrhs

v et 3t

£ DEa i et ey

ey

SgEy p 2

e

Kk Sttt o gesia s

e SR HOK e

character "~" may be used to delete the entire line. (Two successive :'s
delete the last two characters, etc.) An instruction is terminated when a
carriage return is entered. The Editor then either executes the instruction
or issues an error message. It is possible that instructions which add text
to the core file (e. g., Input, Load) could result in an overflow of the memory
area available to the Editor. If this situation occurs, the message "-FULL-"
is typed and the instruction is not completed; the specific action taken by the
Editor is detailed below with the command descriptions. When the editing of

a body of text is completed, the output file must be closed (i.e., an end-of-file

mark must be written on the tape). As described below, this is accomplished

either with a Close command or with a Quit command.

Given now are descriptions of the Editor commands and error messages,

and an example illustrating the use of most of the commands.

Commands

B -(Bottom) Move the pointer to the bottom of the core file.

C# -(Close) Store the remaining text on the output file, close the
output file, and restart the Editor. If an output file has not
yet been specified, the message "T, F =" will be typed by the
Editor (after the user types a carriage return). The user should
then enter the tape unit, file number of the output file.

Dn -(Delete) Delete n lines, starting with the current line. The
pointer is set to the line preceeding the first deleted line so
that text may then be inserted to replace the deleted lines. The
null top line T is ignored by the Delete command. (For example,
with the pointer at T, the instruction "D5" will delete the 5 lines
following T.) If the bottom is encountered, "B" is typed.

E -(End-of-File) Terminate input from the current input file. (A
new input file will be requested with the next Load command.)

Fstring -(Find) Starting with the next line, search for string and type
the line if string is found. If not found, B is typed.

70

Hstring

Istring

Ln

-(Here) After the current line, insert the liaes specified by the
last Move command (see M). If string is blank, the moved
lines are left intact at their original location; if string is non-
blank, the lines are deleted from their original location. The
pointer is reset to the line where the move originated: the first
moved line if the original lines were not deleted; the line pre-
ceeding the moved lines if the criginal were deleted. [An error
message will be issued if a move has not been specified or if a
text-altering command was executed between the Move and Here
commands (see M). If a FULL message is given, the Move has
been discarded.)

-(Ins=rt) Insert string after the current line. If_s_t_ri_ng is
blank, the Editor goes into the INPUT mode, and a number of
lines may be inserted in succession without giving the I-com-
mand. If an empty line is typed in the INPUT mode, the EDIl
mode is re-entered.

-{Locad) Load n lines of text from the input file, adding these
lines at the bottom of the core file. The pointer is set to the first
line of the new (just-loaded) text, and this line is typed out. If
the last line of the input file has been loaded, the message
".EOF-" is also typed. As explained for Close, if the input
file is not specified, the Editor will request one. A FULL
message after a load command means that the space available
for the core file has been exhausted (and consequently fewer
than n lines have been loaded).

-(Move) Prepare to move n lines (starting with the current line).
Following the Move command the pointer should be positioned
at the destination, and a Here command executed. Between the
Move and the Here commands, no text-altering commands
(Insert, Delete, etc.) may take place, or the Move information
will be discarded. As with Delete, the null top line T is ignored

by Move,

71

Nn

Pn

Rstring

Sn

T
Un

-(Next) Position the pointer n lines forward from the current
line.

-(Print) Type n lines starting with the next line. If however,

the current line is the last line, then this line is typed. The
pointer remains at the last line typed.

-(Quit) Store the remaining text on the output file, close the
output file, and return to DEBUG. As with Close, an output-
file identification will be requested if none has been specified.

-(Replace) Replace the current line with string. [An error
message will be issued if string is blank. If a FULL message
is given, the original line has been deleted, but the replacement
text has been discarded. |

-(Store) Store the top n lines on the output file and delete these
lines from the core file. The pointer is set to the new top line,
and this line is typed out. As with Close, an output-file identi-
fication will be requested if none has been specified.

-(Top) Set the pointer to the top of the core file.

-{Up) Move the pointer n lines back from the current line.

Error Messages

??

-FILE-

Invalid command,or invalid tape unit or file number.

The specified input file is not a text file.

-ERROR-(TEXT LOST)

This message is issued if a non-fatal error (an error from which
the system can recover) occurs during a tape read - i. e. aftera
Load command. The lost text is replaced by the characters '##',
and loading continues until the specified number of lines have been
loaded (or until end-of-file is reached). The error message is

issued and the characters '##' are inserted for each block of

text that is lost. After the Load command has been completed
the user must re-type the lost text. (He may, of course, re-

attempt the loading.)

72

-ERROR-(FILE CLOSED)
This message is issued if a fatal (non-irecoverable) tape error
occurs. If the error occurs during a read operation (Load), the
input file has been terminated. If the error occurs during a write
operation (Store, Close, or Quit), any text already on the output
. file is lost.
Example

Suppose we have two files on magnetic tape, one with the text

and the other with the text

WX~ J U

We wish to generate a file with the integers 1-12, with one integer per line.
In the following, underlined characters are those typed by the Editor. A
carriage-return/line-feed follows the last character for each line. (The user

need only type the carriage return; the Editor performs the line feed.)
The Editor is loaded, and the execution begins:

Teletype output Contents of core file after Remarks
execution of instruction

EDIT: (For convenience commas

are used as line delineators)
Lb (car, ret)T, F=0, 1 1,1,2,3,11,12 Load 6 lines from
1 file 1, tape umit 0.

("1" was the first
line loaded.)

Contents of core file after Remarks

Teletype output
execution of instruction

Terminate the input file

E

L#¥(car. ret.)T, F=0,2 1,1,2,3,11,12,4,5,7, 7, 8 Load the entire contents
t -EOF - of unit 0, file 2. End-of-
4 file was reached on the .
E - input file. ("4" was the

first line loaded.)

M5 Prepare to move last 5
lines.

|

é U3 Set the pointer up 3 lines.

\ 3

E HX 1,1,2,3,4,5,7,7,8,11,12 Move the lines here and

E 12 delete them from original

1 B location. (Pointer is set
to "12", the line preceeding

the first moved line.)

Set pointer to top

S R T S

T

D 1,2,3,4,5,7,7,8,11,12 Delete the first "1"
% F7 ' Find the first line con-
4 1 taining "7".
; R Replace the line.
] ?2°? Error. (No replacement
text specified.)
4 R8E 6 1,2,3,4,5,6,7,8,11,12 A typing error ("8") was
deleted, and the "7"
b replaced by a "6".
E’ N2 Forward 2 lines.
5 8
1 —
3 I Begin INPUT mode.
: INPUT:
5 9 1,2,3,4,5,6,7,8,9,11,12 Insert "9". *
- 10 1,2,3,4,5,6,7,8,9,10,11,12 Insert "10".
X (car. ret.) Type empty line to return
3 EDIT: to EDIT mode.
9
4
] i ~
3
1', 74

Teletype output Contents of core file after Remarks
execution of ingtruction

T 1,2,3,4,5,6,7,8,9,10,11,12 Top of file.
: Print everything.

L
9]

11
2

mu—-‘

C#(car.ret.)T, F=1,3 (empty) Store the text on unit 1,
EDIT: file 3, close this file,
and restart.

75

D. Additional Command for Text Editor - ‘o'

The following command has been added to the Text Editor on the
Varian 620/i so that blocks of text may be read in from paper tape that has
been prepared offline:

Command:

) - (Offline Paper Tape) Load a block of text from paper tape,
inserting the text after the current line. (A blank frame of tape
terminates a block of text.) The pointer is set to the first line of
the new (just-loaded) text, and this line is typed out. [Ifa FULL
message is issued the paper tape is stopped after the first line that
could not be loaded. }

In the offline preparation of paper tape, the special characters "@" (for
deleting the pr.:vious character) and "~ " (for deleting an entire line) may be
used in the same manner as in online text editing. KEach line of texl is
termirated by a carriage return or by a line feed. If a line has more than 72

characters, it will be truncated to 72 characters. Empty lines are ignored,

76

E, Additional Command ior Text Editor - 'x!'

The following command has been added to the Varian text editors (CRT

and TTY) to allow modifications to be made on individual lines of text:

Command:

Xd string 1 d string 2d - (Exchange)-In the current line of text
replace string 1 with string 2. "d"is
delimiter and may be any character not
in string 1 or string 2 (except "@" and
") The third delimiter is not
required; the command will execute
properly if terminated solely by a
carriage return. [An error message
will be issued if string 1 is not found cr
if the resultant line is longer than 80
characters or blank,]

Examples:

Text 1234555

Command X /555/567/C.R.

New Text 1234567

Command X/67//C.R.

New Text 12345

Command X/3/3AB/C.R.

New Text 123AB45

C wnmand X//AAA/C.R.

aw Text AAA123AB45

77

%
g
i

F. Differences Between the Varian Supplied Assembler and the
Version Used at MIT/LL

1, Method of Operation

The Lincoln Laboratory version of the assembler supplied by
Varian Data Machines is a two pass assembler operating with m.agnetic tapes
anda CRTor teletype. The first time the source code is read in, locations
are assigned to the symbols and certain errors are detected. On pass 2 the
object cr binary code is produced and a listing of the program is written on

a magnetic tape suitable for printing on IBM equipment.

If the location assigned to a symbol on pass 2 does not agree with the
location assigned on pass 1, a synchronous error results. (An example of

how this can happen is an instruction of the form

BSS N

where N is defined later in the program.) When such an error occurs, a
message is printed and the user must enter either 'C' for continue the

assembly or 'R' for restart the assembler,

2. Operating Pro~edure

The user must mount the tapes containing his source code and
those on which he wishes his binary and listing output to go. The listing tape
must be different from either the source or binary tapes which may be the
same. Up to twenty files may be assembled into one program and these may

be on different tapes.

Error messages are written out in the listing of the program and on
either the teletype or CRT.Normally the crt ir -sed, but the teletype may be
selected by flipping on sense switch 3. Input paraineters are also requested
and entered using the device selected. At any time in an assembly the sense
switch may be flipped and the next time input parameters are requested, it

will be on the opposite device.

78

3. Input Parameters

The assembler requests the input parameters as it wants them.,
It will first ask for the source tape and file numbers. This list is entered
as one tape number, comma, file number, carriage return per line. A 'Q'

- in ple ce of the tape number returns the user :v DEBUG, A '?' negates the

entire argument line being entered. A null line (i.e., just a carriage return)
terminates the list of source files, The binary and listing tapes and files
are then requested. An 'R'may be typed in place of any tape number and

the entire argument list will be requested again. An 'S' typed in place of

the binary or listing tape number suppresses that output file, If several

listings are to be done at a time, 'N' may be typed for the listing tape

argument after the first time and the output will be put on the next file of

the listing tape.

4, Source Statement Format

Each line of source code consists of label, instruction, and
variable fields. (The remarks field is optional,) These fields may be of
any length with a tab used to separate them, If there is no variable field
required by the instruction, there still must be a tab after the op-code.

5. Binary Point Format

In addition to the forms Varian allows the variable field to take,
the LLL version of the assembler allows for a binary point format., In this
format a decimal number may be entered with the position of the binary
poim specified. The result is a single word ard the programmer must know

where the binary point is,

The way to write a number in binary point format is

lx.yB+N

The underlined quantities are required while all others are optional. 'x ., y!
is the decimal fraction. 'N' specifies the position of the binary point. For

'N' equal to zero the result is the floating point number rounded to an integer.

79

R CE¥S b T e A N
MR R WA

Al 2 i
SRR EIN

sy 2

fosE i

AR ST

If 'N'is so large that high order bits would be lost (overflow), an error

message is typed and a full word of zeros assembled.

The following error messages could occur if the format is not ccrrect,

Message Cause Result
*FA no . 2 zero words assembled
*AD no) 1 zero word assembled
*BA overflow 1 zero word assembled

6, Shift Instructions

The mnemonics for four shift instructions have been changed

for greater consistency. They are

LLSR to LSRL
LLRL to LRLL
LASR to ASRL
LASL to ASLL

All shift instruction abbreviations are now of the form ABCD where A
indicates type (logical or arithmetic), B indicates operation (shift or rotate),

C indicates direction (right or left), and D indicates register (A, B, oxr

long).
7. Pseudo-Op Changes
A, MORE It no longer exists since there is no need for it,
B. STRT This pseudo-op has been added to allow a programmer

to specify at any point in his program the entry
point, Its usage is identical to that of the end
instruction, but it does not terminate the assembly.
Its value is in assemblying ceveral different files
into one program,

The entry point specified by the first STRT

80

card takes piecedence over an END card or any other
STRT card. I more than one STRT card is used the
error message *SF is typed. If neither an END nor
a STRT instruction is used, the entry point is sel to

1008 and an appropriate message is typed,

C. END The END instruction is no longer 1equir:i at the end
of the program. The list of source inputs is pro-
cessed until the end of the last file, If an END card
is present, however, it terminates the assembly

where it occurs,

8. Error Handling

Programming error messages are described on page 299 of the
manual provided by Varian Data Machines, Errors that occur during the
operation of the assembler such as tape errors result in self-explanatory
error messages being typed out. Tape errors close all files that have been
opened during the asser ibly; the assembler then returns to ask for new
input parameters. (If a write error occurs, check to see that the tape has

a write ring.)
9. Symbol Table

The assembler automatically puts in the symbol table of every
program a list of commonly used system locations, These locations have a
symbol beginning with a '$' associated with them. Thus a programmer may
1se these symbols in his program without defining them or caring where
system routines are located. (To avoid conflict, use of symbols beginning
with ‘$* should be avoided). These symbols will be printed in the symbol

table of every program,

81

G. Tape Splice

Purpose:

Programmer and Date:
Input Parameters:

Sense Switch Settings:

Locations Used:

Usage:

R ey

To copy a number of formatted files - in any
order - from one magnetic tape to another.
(Formatted files are those written with calls
to $OPEN, $DATA, and $CLOSE and include
text files written by the Editor and binary files
written by the Assembler.)

I. Richer, May 1970
Tape and file numbers entered via keyboard.

SS3 - OFF for operation from CRT terminal
ON for operation from teletype.

100, - 777

8 8

In response to messages written on the CRT
screen (or on the teletype if SS3 is set), the
user enters the following octal parameters:

OUTPUT TAPE (0-3)
INPUT TAPE (0-3)
1st OUTPUT FILE

INPUT FILES:

In response to the INPUT FILES message, the
user enters a list of files in any order. Each
parameter (including each input file number) is
terminated by a carriage return, The input-
file list is terminated by a blank line - i,e, by a
line containing only a carriage return. At any
point, the character 'Q' returns the user to
DEBUG; 'R' rewinds the tapes and restarts the
program, If an invalid character (or an invalid
tape number).is entered a '?' is typed by the
program, and the parameter must be re-entered.

After the final carriage return, the INPUT FILES
are copied from the INPUT TAPE to the OUTPUT
TAPE , with the first file on the list copied onto
the 1st OUTPUT FILE, and the remaining files
copied in sequence. After each file is copied, the
output tape is backspiced and the file is verified
(re-read). If a tape error is encountered, copying
is halted and the appropriate error message is
typed. When copying is complete, the program
types the number of the next output file and requests
more input files for copying between the same

input and output tapes. Tne user then may enter
another list of input files, may restart the program
{e.g., in order to re-specify the input or output
tape),or may return to DEBUG,

82

Error Messages: ?

-Invalid character (parameter must be
re-entered)

READ
WRITE ERROR-COPYING HALTED
VERIFICATION AT INPUT FILE N

-Tape errors encountered while copying file
number N,

w«.ﬁ?z‘w LY L

paily

83

H. Tape Duplicate

Purpose:

Programmer & Date:

Input Parameters:

Sense Switch Settings:

Locations Used:

Usage:

To copy, record-for-record, a number of files

from one magnetic tape to another,
I. Richer, May 1970.
Tape and file numbers entered via keyboard.

SS1 - OFF for normal operation

ON to terminate copying.

SS3 - OFF for operation from CRT terminal

ON for operation from teletype.

100, - 31000

8 8

In response to messages written on the CRT
screen (or on the teletype if SS3 is set), the user

enters the following octal parameters:

OUTPUT TAPE (0 - 3)
INPUT TAPE (0 - 3)
FIRST FILE
LAST FILE

The character 'Q' returns the user to DEBUG. If
an invalid character (or an invalid tape number) is
typed, the OUTPUT TAPE will again be requested,
and all input parameters must be re-entered. Each

parameter is terminated by a carriage return,

After the final carriage return, the program copies,
record-for-record, all files from the FIRST FILE
through the LAST FILE, inclusive, from the INPUT
TAPE to the OUTPUT TAPE, After each record

is written the output tape is backspaced and the
record is verified (re-read). If a tape error is
encountered-either on reading, on writing, or on
verifying - the operation is re-tried. If four errors
occur in the same record, an error message is
typed, but copying continues. SSI1 may be set to

terminate the copying. When copying is complete,

84

Error Messages:

the tapes are rewound,

?°?

-Invalid character (the first iiput parameter
will tiuen be requested)

READ
WRITE ERROR - FILE N

VERIFICATION

-Four tape errors were made in copying
a record in file number N.

85

I. Tape Copy

Purpose:

Programmer and Date:

Input Parameters:

Usage:

Error Messages:

To copy either a paper tape file or a formatted
magnetic tape file onto either a paper tape file
or a formatted magnetic tape file. (Formatted
files are those written with calls to $OPEN,
$DATA, and $CLOSE and include text files
written by the Editor and binary files written
by the Assembler.)

I. Richer, May 1970

Input medium and output medium (magnetic or
paper tape). If magnetic tape, tape and file
numbers.

In response to messages written on the teletype,
the user enters the letter m to designate
magnetic tape or the letter p to designate paper
tape., If magnetic tape is specified, the program
requests tape (0-3) and file number which are
entered separated by a comma and terminated
with a carriage return, At any point, ihe
character 'Q' returns the user to DEBUG. If

an invalid character (or an invalid tape

number) is entered, a '?'is typed by the
program, and the parameter must be re-entered,
If a tape error is encountered, copying is

halted and the appropriate error message is
typed. When copying is complete, the user

then may enter another input list, or may

return to DEBUG.

?

- Invalid character (parameter must be
re-entered),

WRITE ERROR - COPY TERMINATED
READ ERROR - COPY TERMINATED

- Tape errors encountered while
copying file,

86

J. List/Dump

Purpose:

Programmer:

Date:

Locations used:

Input parameters:

Usage:

Error messages:

To copy a file on a Varian user tape to a file on another
tape in such a format that it can be printed on the IBM
360/40.

C. D. Cappello
May 1969

1008 - 16258

1. The numbers of the output tape and file,

2. The numbers of the tape and file to be copied.

In response to messages written on the teletype the user

enters the input parameters in octal, An 'N'in place of

the output tape and file numbers specifies the next file on

the specified tape to be used, A 'Q' returns the user to DEBUG.

? - An illegal character has been
typed as an input value. Both the
tape number and the file number
must be entered again,

TAPE CHOICE - The input and output tapes mus. be
different. Re-enter the input i:.-a-
meters,

FILE TYPE ILLEGAL - At present only file types of binary
and text are accepted; hence, any
other type illegal. Re-enter the input

parameters,
RECORD LOST - A read error has occurred. Data 1s
lost but the program continues,
UNRECOVERABLE
READ ERROR - A read error has occurred and the

program cannot continue reading. A
file mark is written on the output tape
and the program restarted.

87

Remarks:

WRITE ERROR - A write error occurred. A file mark
is written and the program restarted.

NO WRITE RING - Check to see that a write ring is in and
the write enable light on,

The tape and file numbers of the tape to be copied are
printed at the top of the output, Text files are written
in a listing format and binary files are printed as an
octal dump,

88

]

IV, GENERAL-PURPOSE SUBROUTINES

. A, Plsiting

1. INTRODUCTION

The plotting routines facilitate the display of data in graphical
\ form on the Computek CRT terminal, which is interfaced as an 1/O device
‘ ' with the Varian 620/i computer, and on the X-Y plotter, which serves as an
offline facility, These routines are designed to eliminate as much as

¢ possible the tedious cheres associated with graphing and still retain enough
‘ flexibility to accommodate a wide variety of graphs, With these routines
the user need not concern himself with specific commands directed to the
;z CRT; the programs will automatically:

t a. Scale axes,

1 b. Position axes on the CRT screen,

'3 c. Place either grid marks or grid lines on axes,

i

3 Label axes and title graphs,

! e, Number axes limits,

4 . Perform linear transformation of data coordinates to screen

3 coordinates,

g. Plot data curves on grids,

4 The versatility of these routines is indicated by the options available to the
4 user:

k

a. One set of axes may be displayed full screen or two sets of

. axes may be displayed with one in the top "and the other in
) the bottom half for direct comparison,

: b Axes limits may be specified or determin. , the limits of

4 ; data to be displayed.

H

- c. Data points may be placed on the axes with or without lines

e joining the points,

g

» d. Several sets of data may be displayed on the same axes, each

3 set having points marked with a different characcer.

, , e, The x coordinates of data may be specified explicitly or

: implicitly in the form of an initial value and uniform 1ncrements
along the x axis,

89

SR, S

f. The point coordinates may be stored in a buffer and plotted
consecutively or may be individually added to a set already
displayed on the screen.

When it is desired to graph the contents of a buffer, an executive routine is
available which already includes the appropriate calls to the plotting

routines, The characteristics of this executive routine are:

a. Screen is initially erased.

b. Only one curve on a full screen graph is drawr..

c. Y coordinates consist of data values.

d. X coordinates are stepped by 1 firom an initial value of 0,
e. All N points are plotted.

f. N-1 appears as upper limit of X,

g. Minimum value of data is lower Y limit,

h, Maximum value of data is upper Y limit,

-
.

Item name appears as ordinate label.
A horizontal line at Y=0 is drawn if MIN < 0 < MAX,

k. Ordinate numbers are divided by the scale in the Item Block,
If 1 < scale g 32767; otherwise the numbers are not scaled
and a message identifying the scale is written on the screen,

e
.

{
2. USAGE

Efficient programming and ease of user operation dictate that
the input parameters be transferred to the plotting routines in block form
with only addresses of the blocks passed as arguments of a CALL instruction,
Since the input parameters fall naturally into two distinct categories - a set
associated with the display of coordinates axes and a set associated with the
display of data points - two separate block forms are used. These blocks,
which must be in the user's program, are designated as an axis block, BAX,
and a data block, BPLT, and are described in Appendix i, The advantage of
using two separate block forms is that curves from several different data
blocks can conveniently be placed on the axes described by one axis block,
As a general rule, the user's blocks are left unchanged by the plotting sub-

routines; this rule is violated only in the following cases, Both PLOT and

90

PJOIN fill PPLT+7 and BPLT+8 with the last data point coordinates.

PLIMIT fills BAX+2 and BAX+3 with extrema of Y coordinates of data and,
if C(BPLT) # 0, fills BAX and BAX+1 with extrema of X coordinates of data,
Input information to the executive routine is a special block form described

in Appendix IIL.

The plotting routines are used to display graphs on the CRT and to
punch paper tape for drawing graphs on the X-Y plotter. For the latter use,
PPPP SET 1 must be inserted into the main program at asserubly time and
both SS3 and the paper tape punch must be on at execution time; these
conditions, however, do not affect graphs displayed on the CRT. The paper
tape created will draw only data curves on the plotter. Axes for these curves
are available on a separate paper tape punched using a special program for

that purpose,

On the CRT screen, though, axes, labels, numbers, and titles appear
with the curves. There are separate routines for displaying axes and for
drawing curves; this provides the user with the flexibility of placing several
curves on the same set of axes. However, it requires him to make a
minimum of two separate calls to draw a complete graph. The user may
select either one graph drawn full screen, top half screen, or bottom half
screen, The last two choices are provided so that two separate graphs can
be displayed at the same time for direct comparison. The screen is not
automatically erased prior to the placement of an axis; the user must either
insert the instruction CALL $DCLR in his program or type the page key or

the erase key on the CRT keyboard in order to erase the screen,

If PPFU SET 1 is included in the user's program at assembly time,
the graphs will be drawn full width of the screen, Otherwise, the graphs
are offset to the right to allow room for printing out information with DEBUG,
These routines occupy 948 memory locations anywhere in core, If paper
tape output is desired so that PPPP SET 1 is in the user's program, these

routines occupy 1033 memory locations, In order to reduce the possibility

13

91

of a label conflict, all labels of the plotting routines begin with the letter P,
while the I/O routines begin with the letters $D. The user is urged to avoid
beginning any of his labels with those letters, No indirect pointers and no
literals are used in order that these routines be fully compatible with any

program, No error messages are included with these routines. The

program will continue to interrogate the CRT until a ready state is sensed;
only then will it send output to the CRT,.

3, EXAMPLES

Outlined below are typical instruction sequences illustrating the

usage of the plotting routines. Figures 1-4 are the actual graphs displayed

by examples a-d.

(a)
i CALL $DCLR ERASE SCREEN
; CALL PLIM,Al, D2 LET DATA DETERMINE GRAPH LIMITS
! CALL PAX,Al DRAW AXES
‘ LDA =5 STEP INITIALLY FROM X=5
STA D2+2
CALL PLOT,Al,D2 PLOT IST 10 POINTS
LDA =60 STEP FROM X=60
STA D2+2
CALL PJOIN,Al,D2 JOIN CURVE ONTO ITSELF
CALL PHOR, A1, 0 DRAW HORIZONTAL LINE AT Y=0
CALL PHOR,Al,60 DRAW HORIZONTAL LINE AT Y=60
CALL PMESG, 600, 770, MSG1
LDA =3 .
: CALL PONV OUTPUT NUMBER
; CALL PMESG, 600, 750, MSG2
| LDA =10
' CALL PONV OUTPUT NUMBER
CALL $PAUSE, =0 ENTRY TO DEBUG
|
; MSG1 DATA 'TAPE=", 0
! MSG2 DATA 'FILE="', 0
Al DATA 0,100,0,0, 1,ABS,ORD, TITLE, 1, 1
D2 DATA 0,Y1,0,5,10,1, 40,0
Yl DATA 0,-10, 150, 60, 80, 40, 120, -20, -30, 0
ABS DATA 'ABSCISSA ', 0
ORD DATA 'ORDINATE', 0
TITLE DATA 'GRAPH TITLE', 0

92

e

FlLE= 10

TAPE> 3

|
|

|

CRAPH TINLE

N

ORDINATE
150.0[

R A A R A ARt SRR B Rt e 20 i R R e e

100.0

Example (a).

Fig. 1.

93

L.-g;.)* s
ot
SR X
K > ¢‘
i

o
-
5
%
& (b)
5 CALL $DCLR ERASE SCREEN
5 CALL PAX,A3 DRAW LOWER AXES
% CALL PLOT,A3,Dl PLOT DATA
% , CALL PAX, A2 DRAW UPPER AXIS
S CALL PLOT,A2,Dl PLOT DATA
@ CALL PINV, A2 READ CURSOR POSITION
£ CALL PINV,A2 READ CURSOR POSITION
g ’ CALL $PAUSE, =0 ENTRY TO DEBUG
.
E, A2 DATA -50,200, -50,200,2,ABS, ORD, TITLE, 1, 1
3 A3 DATA -50,200.-50, 200, 3, ABS, ORD, TITLE, 1, !
‘ D1 DATA X1,v:0,0,10,1,0,0,0
X1 DATA -20, 10, 20, 30, 40, 50, 60,70, 80, 150
2 Y1 DATA 0,-10, 150, 60, 80, 40, 120, -20, -30, 0
] ABS DATA 1ABSCISSA', 0
i ORD DATA 'ORDINATE', 0
E TITLE DATA 'GRAPH TITLE', 0
1
% (¢)
»
5 CALL $DCLR ERASE SCREEN
| CALL PAX, A4 DRAW AXES
CALL PLOT, A4, D4 PLOT DATA
; CALL PMESG, 850,770, CDATE PRINT DATE
CALL PMESG, 600,702, LABEL PRINT IDENTIFYING LABE?,
A4 DATA 0,255,)-40,B88,0,-1,ABS,ORD, 0, 1,)1. B8
D4 DATA 0,Y+:0,1,256,1,0,0,0
Y4 BSS 256
, ABS DATA 'NO. OF PTS.',0
! ORD DATA 'SPECTRUM (DR}, 0
‘ CDATE DATA 'AUG 24, 1972',0
LABEL DATA 'FREQUENCY 0-500 (HZ)',0

94

ORDINATE CRAPH TINLE -m
200.

150.0

38.00 vormaoresese

b

r
'-!i" .""l; .Y L

. A
~50.00 “SCISSN.DO £0.00 200.0

ORDINMATE GRAPH TITE
200.0r

5

o

savececseccccscccelectscsccrrncsssacey

'” . °¢ 'y x5 1 4 A q 2 r'e
~50.00 ABSCI SSA 200.0

Fig. 2. Example (b).

95

255.0

MG 24. 'O2

[l
g —=
;i 5
= 2
g i :
o °
]
&] >
[S
o
50
=

NO. OF PTS.

SPECTRUM (DB)
0
H
-40.00L

e A T ey

(d) Prior to the execution of the following instructions, the buffer is
filled with data representing an amplitude modulated carrier.

. LDX =ITEM ITEM ADDRESS
CALL PG GRAPH BUFFER CONTENTS
CALL $PAUSE, =0 ENTRY TO DEBUG
TTEM DATA 'TEST', 01700,161,0,0, BUFF
BUFF BSS 161
CDATE DATA 'JUL 20, 1972',0

97

In 20. W2

160.0

NO. OF PTS.

Example (d).

Fig. 4.

98

PG

Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:

Remarks:

Executive subroutine to graph the contents of a
buffer,

CALL PG

C(X) = address of input block
None

A, B, X, and OF

A set of y coordinates stored in a buffer is
plotted against a buffer index value on a set of
axes drawn full screen, where the y axis limits
are the extrema of the data values, A
horizontal line at the value y=0 is drawn,
provided it iies within the graph limits. The
item pame appears as the ordinate label, An
identifying date or label at the upper right
corner of the screen will be displayed if the
user has included the ASCII code for this
(terminated by a 0) with label CDATE; e.g.,
the user must supply: CDATE DATA 'JAN 1,
1972',0 . If location 755 contains the address
of ITEM and if the address following the input
block (ITEM+7) contains the address of PG,
then typing @ ITEMS on the 1/O terminal in
DEBUG environment will display the buffer on
the CRT screen. The input block is described
in Appendix II,

PAX
Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:

Remarks:

Subroutine to draw one set of axes on the CRT,
CALL PAX,BAX

None

OF = 0

OF

One cet of axes specified in the axis block BAX is
drawn either full scr:en, top half screen, or bottom
half screen. Axes are offset to the right to leave
room for I/O with the CPU. The screer is not
initially erased; to erase the screen, user must
either insert CALL $DCLR in his program or type
page key or erase key on the CRT keyboard prior to
drawing axes. User may specify either small tick
marks on each axis or full grid lines; in either case
each axis will be divided into 10 intervals. Each
axis is numbered in decimal by its lower limit and
its upper limit divided by the scale for that axis
(scale 2 1) with the results truncated to 4 digits

(5 if result > 9999), Grapu title and labels for each
axis may be provided. Labels and title texts are
terminated by a zero word., Abolt 60 character
spaces are available for title and ordinate label,
CRT cursor is returned to its original position after

this routine is executed.

100

PLOT

Calling Sequence:
Input Parameters:
Output Parameters:

Registers Used:

Sense Switch Settings:

Equipment:

Remarks:

Subroutine to plot a set of data points on the CRT
CALL PLOT,BAX,BPLT

None

OF = 0

OF

SS3 omn if paper tape output is desired in addition to
CRT display.

Paper tape punch on if paper tape output is desired
in addition to CRT display,

A set of N data points specified in the data block
with pointer BPLT is displayed on the axes specified
in the axis block with pointer BAX, The Y coordi-
nates of data are stored in consecutive locations.
The X coordinates of data either are stored i con-
secutive locations or are uniformly spaced from an
initial value with a specified spacing. Points are
marked with any specified symbol whose ASCII code
is given in BPLT +6, (Note that to mark a point
with a dot, C(BPLT +6) = 0, since a normal period
does not center properly.) User may specify that
adjacent plotted points be joined with straight lines.
Y values of data outside the Y limits are replaced
by values just beyond the nearest Y limits. pata
points with X values outside the X limits are not
plotted. Repeated executions of PLOT may be made
after any execution of PAX, in order to place
several curves on one set of axes, CRT cursor is
returned to its original position after this routine is

executed,

101

PJOIN

Calling Sequence:
Input Parameters.
Output Parameters:

Registers Used:

Sense Switch Settings:

Equipment:

Remarks:

Subroutine to plot a set of data points on the CRT and
join this set with the previous set plotted from the
same data block,

CALL PJOIN, BAX,BPLT
None

OF = 0

OF

SS3 on if paper tape output is desired in addition to
CRT display,

Paper tape punch on if paper tape output is desired
in addition to CRT display.

A set of N data points specified in the data block with
pointer BPLT is displayed on the axes specified in
the axis block with pointer BAX and is joined with the
point whose cocrdinates are (C(BPLT+7),

C(BPLT +8))., On exiting from this routine and
routine PLOT, the coordinates of the lasi data point
are stored in BPLT+7 and BPLT +8; hence, this
routine enables the user to add on a set of points to
an existing curve on the screen, The Y coordinates
of data are stored in consecutive locations, The X
coordinates of data either are stored in consecutive
locations or are uniformly spaced from an initial
value with a specified spacing. Points are marked
with any specified symbol whose ASCII code is given
in BPLT+6, (Note that to mark a point with a dot,
C(BPLT +6) = 0, since a normal period does not
center properly.) User may specify that adjacent

plotted points be joined with straight lines, Y values

102

e oy

&
k.
o
.

54
X

\
S

of data outside the Y limits are replaced by values
just beyond the nearest Y limits, Data points with

X values outside the X limits are not plotted,
Repeated executions of PJOIN may be made after any
execution of PAX in order to draw a curve, one point
or any other number of points at a time, Before the
first use of PJOIN, C(BPLT+7) and C(BLT + 8) must
be initialized by either having prior use of PLOT
with the same blocks or by storing an abscissa out-
side the X limits in BPLT+7; in the latter case
PLOT and PJOIN perform identically, CRT cursor
is returned to its original position after this routine

is executed,

103

4V

AT ST
AR

SR

ST

2
N
.
x’ /
3
5
&

¥
3

.........

PLIMIT

Calling Sequence:
Input Parameters:
Output Parameters:
Registers Used:

Remarks:

Subroutine to use data extrema for determining
graph limits,

CALL PLIMIT, BAX, BPLT
None

OF = 0

OF

Extrema of both X and Y data specified in the data
block with pointer BPLT are stored as X and Y
limits, respectively, in an axis block with pointer
BAX. If X coordinates are uniformly spaced rather
than explicitly stored, then X limits in the axis
block remain unchanged. CRT cursor is returned

to its original position after this routine is executed.

104

DR e

phkce Le N B A CZ DR

AL T A Ot

Ry A Oy I A S T B AT R T AR

PHOR

Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:

Remarks:

Subroutine to draw a horizontal line across a graph

at a given Y position,
CALL PHOR,BAX,Y
None

OF =1

OF

Y is the data ordinate value specifying the position
of the horizontal line which is to be drawn on a set of
axes specified by the axis block with puinter BAX,
The line is drawn only if Y lies between the lower Y
limit and the upper Y limit specified in the axis
block; otherwise no action is taken., When the line
is drawn, it is numbered in decimal by the value Y
divided by the scale for the Y axis (scale 2 1) with
the results truncated to 4 digits (5 if result > 9999).
CRT cursor is returned to *ts original position after

this routine is executed.

105

M

)

AR T TR ATES

Qi LY RN e e b R CUEERERR S i vk et gea b iR U

PINV

Calling Sequence:
Input Parameters:

Output Parameters:

Registers Used:

Usage:

Remarks:

Subroutine to read cursor position ccordinates, map
to data coordinates, draw dotted lines from cursor
position to axes, and print on the CRT the values of
the data coordinates divided by axis scalc.

CALL PINV, BAX

None

C(A) = data abscissa equivalent of cursor location
C(B) = data ordinate equivalent of cursor location
OF =0

A, B and OF

When PINV is execntied, the CPU is initially waiting
for any input from the CRT. During this time, the
operator may position the cursor with cursor
positioning keys on the keyboard. After the cursor
is at the desired position, the operator types any
alphanumeric key on the CRT. Dotted lines are then
drawn from the cursor position to the axes, and the
values of the data coordinates divided by the

appropriate scale for each axis are displayed.

Although the screen has a 10 bit resolution, the
cursor position is read to only 8 bit resolution.
Since graphs occupy something substantially less
than full screen, overall accuracy of the cursor
reading feature is about 14 of full scale. CRT
cursor is returned to its original position after this

routine is executed.

106

PMESG

Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:

Remarks:

Subroutine to write 2 message on the CRT at a
specified location.

CALL PMESG, XCRT, YCRT, MESSAGE ADDRESS
None
None
None

Message address is a pointer to text in ASCII code
which is to be outputted. Text is terminated by a
zero word. Coordinates. (XCRT,YCRT), are the
CRT coordinates specifying the location of the lower
left corner of the initial character in the message.
Restrictions on these coordinates are

0 < XCRT < 1011, 0 < YCRT < 788, where (0,0)
are the coordinates of the lower left corner of the
screen. A single character lies in a cell of dimen-
sion 12 points wide and 20 points high; thus, there
is room for 40 lines with 85 characters on each line.
A frequent use of this rowvtine is to identify a para-
meter associated with a graph on display. In that
case a message, such as 'FREQUENCY = ', could
be printed a little above the top of the graph. Then
the value of that parameter should be loaded into
the A register, and a CALL PONV executed to print
the decimal value cf that parameter on the screen,
Screen coordinates locating corners of the graphs

drawn are given in Table 1.

107

3
A
A
<
b

ey oy

LR A v T e

e rgai

PWRT

Calling Sequence:
Input Parameters:
Output Parameters:
Registers Used:

Remarks:

Subroutine to write a message on the CRT at the

currsor location.

CALL PWRT

C(X) = MESSAGE ADDRESS
None

A, X

Message address is a pointer to text in ASCIL
code which is o be outputted. Text is

terminated by a zero word.

108

ks 8

‘ﬂ‘ & ™

v

LAy

. 0
ThRe

POTIAIAI TN AT

Calling Sequence:
Input Parameters:
Ouiput Parameters:
Registers Used:

Remarks:

Subroutine to cutput decimal value of A register on
the CRT at cursor location.

CALL PONV
C(A) = namber
None
None

A frequent use of this routine is to print the value of
a parameter on the screen immediately after writing
a message with PMESG which both identifies the
parameter and positions the cursor to the next

character cell following the message.

109

Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:

Remarks:

xam oW

e Nty

Subroutine to output the scaled value of the B
register on the CRT at the cursor location
(i.e., output = C{B)/C(A)).

CALL POSV
C(A) = Scale
C(B) = Number
None

A, B, X,0OF

A frequent use of this routine is to print the
value of a non-integer parameter on the screen
immediately after writing 2 message with
PMESG wkich both identifies the parameter and
positions the cursor to the next character cell
following the message. The results are
truncated to 4 digits (5 if result > 9999).

110

PEXTRM

Calling Sequence:

bpuat Parameters:

Output Parameters:

Registers Used:

Subroutine to determine extrema of a data set in
consecutive memory locations.

CALL PEXTRM

C(A) = pointer to data set
C(X) = number of data words
C(A) = maximum of data set
C(B) = minimum of data et
C(X) =0

OF =0

A, B, Xand OF

111

PHSTOP

Calling Sequence:
Input Parameters:
Output Parameters:
Registers Used:

Remarks:

Subroutine to punch a ckaracter on paper tape which
will stop the paper tape reader for the X-Y plotter.

JS3M PHSTOP
None
Nomne
Noae

A stop paper tape reader command between graphs
is necessary in thoce situations in which the user
wants to punch several graphs on a single paper tape
and yet wants to display them on different charts.
Also, without this command after the last graph, the
paper tape will wind off entirely from the feed reei
on the X-Y plotter.

112

APPENDIX I
Information blocks to the plotting subroutines have the following form,
where BAX is a pointer to an axis block and BPLT is a pointer tc a data block:
BAX+0: X1, = Lower Bound on X Graphed
. +1: XU = Upper Bound on X Graphed
+2: YL = Lower Bound on Y Graphed
+3: YU = Upper Bound on Y Graphed
+4: CODE = % 1, One Graph Drawn Full Screen
= * 2, Top Graph of Two Graphs Drawn
= * 3, Bottom Graph of Two Graphs Drawn
+ Indicates Short Markers Will be Drawn
on Each Coord. Axis
- Indicates Grid Lines Will be Drawn
+5: ABS = Address of Abscissa Label (Terminated by 0)
0 = Default on Label
+6: ORD = Address of Ordinate Label (Terminated by 0)
0 = Default on Label
+7: TITLE = Address of Title Text (Terminated by 0)
0 = Default on Title
+8: X SCALE = Scale on X Axis

+9: Y SCALE = Scale on Y Axis

113

BPLT+O0: X ARRAY

Address of First X Coordinate
0, X Values Will be Stepped
+1: Y ARRAY Address of First Y Coordinate

+2: XMIN = First X Value when Stepped (Ignored if not
Stepped)

+3: DELTA = X Spacing when Stepped (Ignored if not Stepped)
+4: N = Number of Points to be Plotted
+5: ARG = 1, Lines Join Adjacent Plotted Points

= 0, No Lines Drawn

+6: 'SYMBOL' = ASCII Code of a Single Character to Mark
Points

= 0, Point Marked with a Dot

+7: STORAGE (PLOT and PJOIN Insert X Coordinate of Last
Point)

+8: STORAGE (PLOT and PJOIN Insert Y Coordinate of Last
Point)

]

114

APPENDIX I

The information block to the executive plotting routine, PG, has the
following form, where ITEM is the pointer to the input block:
ITEM+0: 'NAME' = 4 ASCII characters packed into 2 words to label
> ordinate

+2: FORMAT = position of binary point of data in 2's
complement form in bits 15-6,

+3: N = buffer length

+4: Ignored

+5: Ignored

+6: ARRAY = buffer address.

The form of this input block is identical to the form of the input blocks to a

receiver simulation program written on the Varian 620/i, For that reason

there are some unused locations in the input block to the executive plotting

routine,

115

62.0%

. - R o - hrs A W e
ot B ORI B . i L 1 S S ~:>?£?’ig§;\‘}c*‘% "%’f AR
LT =224

TABLE 1

CRT Coordinates and Plotter Coordinates of Graph Corners

Lower Left Upper Right
Code Corner Corner
CRT Full Width 1 80,47 1020, 687
2 80, 447 1020, 767
3 80, 47 1020, 367
Partial Width 1 320,47 1020, 687
320, 447 1020, 767
3 320,47 1020, 367
PLOTTER 1 0,0 5600,5120
0,0 5600,5120
0,0 5600,5120

116

B. Mean and Variance

Purpose:

Programmer and Date:

Calling Sequence:

Input Parameters:

Output Parameters:

Registers Used:
Locations Used:

Usage:

To compute mean aid variance of sets of data in
consecutive locations, An initializatior subroutine,
an execution subroutine, and a finalization subroutine
are provided.

J. Michaud, July 1970

CALL # JIN, BLOCK (initialization rovtine)
CALL #.,EX,BLOCK (execution routine)
CALL #JFI, BLOCK (finalization routine)

where BLOCK is the starting address of a block
of parameters,

C(BLOCK+0) = pointer to the data array
C(BLOCK+1) = m = number of points in the array
From #JEX:
C(BLOCK+2) = n = current totat number of data
n points
C(BLOCK + 3) .
C(BLOCK+4)} E__l data (double-precision)
C(BLOCK+5)y, n 2
C(BLOCK+ 6) } if_ } data® (triple-precision)
C(BLOCK+7)" ™

OF set if n > 32767 = 215-1 (OF reset otherwise)

From #JI%I:

C(BLLOCK+2) = n = total number of data points
C(BLOCK+ 3)}

C\BLOCK + 4)
C(BLOCK+5) = 0
C(BLOCK+ 6)}
C(BLOCK+17)

mean (double precision, B15)

variance (double-precision integer)

OF used by #JEX
3558, anywhere in core.

Subroutine #JIN sets to zero locations BLOCK + 2
through BLOCK+7,

Subroutine #JEX updates the current total of data word
summed since the last call to #JIN, computes the runn
sum T data, and computes the running sum X datal,

Subroutine #JFI computes the mean and variance
according to the following formulas:

mean = _l’l; % data

[Edata2 - (mean)(Z data))

Sh—

variance =

117

e e SR K Wl 8 3 TR AEN ¢ Trean e e R T o T AT G EW T e o T e, T e TR i

where the mean is in standard double-precision
format (second word always positive) with the
binary point to the right of the first word, and
the variance is a double-precision integer.

Remarks: No indirect pointers and no literals are used in
order that these subroutines be fully compatible
with any program.

Repeated calls to #JEX may be made with the
same or different input parameters before calling
#JFL

The user should check OF on return from #JEX
since erroneous results occur if n > 327¢7.

118

C. Amplitude Prouability Density

Purpose:

Programmer and Date:

Calling Sequence:

Input Parameters:

Registers Used:
Locations Used:

Usage:

To compute the amplitude probability density
of sets of data in consecutive locations. An
initialization subroutine and an execution
subroutine are provided.

C. Cappello, July 1970

CALL BINIT, BLOCK (initialization
routine)

CALL BMAIN, BLOCK (execution
routine)

C(BLOCK+0) = pointer to input array

C(BLOCK+1) = number of points in input
array

C(BLOCK+2) = upper bin limit

C(BLOCK+3) = ignored

C(BLOCK+4) = pointer to the bins

C(BLOCK+5) = lower bin limit

C(BLOCK+6) = bin width

C(BLOCK+7) = storage (BINIT fills with

number of bins)
A, B, X, OF
1278, anywhere in core

Subroutine BINIT :alculates the total number
of bins from the formula;

N = E+ upper bin lémit.— lower bin limit_l
bin width
and stores this in BLOCK+7. The symbols [7]
indicate that the rounded up integer value of
the expression is to be used. In the above
formula the 2 is there to accommodate numbers
outside of bin limits. The user must leave
enough room in core to accommodate all the
bins. It is suggested that the user should plot
the bin contents with the executive plotting
subroutine for rapid examination,

2, 8k
il
bt]
ummm
1gg2
Raglu
P mm
p Py
13
mm&mm 3
rmmum
mm.m_ &

Remarks

2

AL E

ORI IR TR

D. FFT Spectrum Averaging

Purpose:

Prograramer and Date:

Input Parameters:

Locations Used:

Usage:

Example:

To average a number of blocks of FFT output data
in order to increa<e the accuracy of spectral
analysis plots.

M. Saklad - February 1972

C(C#DN) = NFFT = number of data points per block
C(C#DN+2) = NBLOCK = number of FFT output data

blocks to be averaged where C#DN is accessed by
@ DISP. ;

NpLockMax) = 32767)-
Nerrmax) = 4000g = 2048,,.

NFFT must be a power of 2.

2768 locations included in the FFT spectrum analysis
program RESP. 60005 = 3072,, = 3*(NFFT(MAX)/Z)

locations are used as a work area in lower core.
These locations are not initialized unless RBL.OCK
averaging routine is to be calied. This area is in
addition to the 100008= 4096 10 = Z*NFFT(MAX)

locations normally utilized by RESP.

RBLOCK, which is incorporated as a subroutin: >f
the FFT spectrum analysis program RESP, is executed
only if NBLOCK > 0. The resultant spectrum

analysis will be displayed upon completion of the
averaging., Time waveforms and phase plots are

available orly for the default condition of NBLOCK =0

in which the spectrum analysis is performed on only
one block of data.

PP E R TPV AT Vit e+ Ty

AR Y

Exaogerre

TR

In order to average 10010 = 1448 blocks of input data
consisting of 102410 = 20008 data points, the following

data must be provided:

et S B e Tt

@disp/xxxx 2000; # of points per block (Nppp)i

XXXX /XXKX; input buffer address :

xxxx/xxxx 144 # of blocks to be averaged
Npr.ock’

p/start program start

(o

.,
j

———

""'(?W'V"““*WWWWVWMM"’W,‘M«'WR&W‘ﬂ’*\‘l‘iﬂiﬂ&ﬁﬁfﬁ?ﬁﬂ\'ﬁt’ix'mwl%‘zﬂ‘m‘w!ﬂu&{ﬁ}ﬁm& 34

e e

Error Messages:

Remarks:

Program Operation:

None. No error checking has been implemented
for negative values of NBLOCK’

Upon execution, RBLOCK terminates the program
table with the MULTICHIP display program; if the
programs subsequent to MULTICHIP are desired,
the simulation program must be reloaded since the
RBLOCK work area utilizes the same core locations
as these programs.

If it is desired to see time waveform plots and/or
phase plots, NBLOCK may be changed to zero and

back again without problems. However, the data
examined will be lost to the next averaging unless
the change from NBLOCK = 0 to NBLOCK =N is

made immediately after the time waveform is plotted.

After a sufficiert number of input points {specified

as the # of points per block) are available they are
discrete Fourier transformed by the FFT routine,
TRANS. The energ, in each frequency band is
obtained by calculating R%+I% (real? plus imagina
components). The energy in each frequency band of
each block is added to the previous values. These
values are calculated in double precision floating

point to preserve accuracy and dynamic range. After
this is done the specified number of times, the totals
are normalized by the number of blocks in the average
and converted to dB by taking 10 loglo (average) where

the average is considered to be a B15 value. The
equivalent bandwidth of each filter is given as (sampling
rate/# of points per block); however, the program
does not normalize by the filter bandwidth to give a
true spectral density.

For a numerical example, assume the input data
consists of independent samples of zero mean poise
with standard deviation 0o BO (or 015 = 00*2’ B15

if the data is considered B15). Then the spectrum is
flat with height, H_ = (# points per block)* o1s - If

enough blocks are averaged, the resultant spectral
plot will be close to H . If g = 4096 (g, = 273), H_

will be (# of points per block)#2-6; this number
converted to dB, 10 log10 (# of points per block)*‘g'6

is actually plotted. The standard deviation of the
error for each spectral point will be approximately
UHOz H_* (2/# blocks ca’\Ierra.ged)l 2, Hence averaging
100 blocks will yield 5§ %~ 0. 14 corresponding to
o

684 of the points falling within 0,6 dB (10 log 1. 14)

of the expected spectral level. This error analysis is
true also for other than independent input samples.

122

i

Tl

AR 023 R e

v e b st

E. Miscellaneous
The subroutines below are well enough commented in the listings
that a brief description is adequate. For more complete information,

reference should be made to the listings. In addition to corrections applied
to the mathematics subroutines, error returns were deleted.

DP Double.precision mathematics,

;((Sclgs Sine and cosine (modified to use table lookup),

XRCOS Cosine with input angle in revolutions B15,

TARC Phase angle of a complex number,

XSQRT Square root,

AGSQRT Pseudo-double-precision integer square root,

XLOG Logarithm,

DBEX Decibel conversion,

$OF Routine which sets A register to saturation level if
overflow occurred; this is frequently used after
an addition,

4STR Buffer transfer,

K7ADD Block data adder,

K2CALL Block data adder with scaling,

FUNC Generalized function generator,

4GRAN Random number generators,

#GGAUS Gaussian random number generator,

$#GP Random bit generators,

TRAN FFT generator,

123

.3

Ly {Roroat Kt el a5

YL A vent S peA R

“‘ -

$rit

L8R ae g i MR

g

Sy

V. SIMULATION PROGRAMS
A. DEBUG Commands for Use with the Simulation-Control Program

In order to simplify the use of the Simulation Control Program, a
number of commands which refer symbolically to simulation parameters have
been added to DEBUG. Communication between DEBUG and the Simulation
Control Program is via the Item Table which is specified at assembly time.

A parameter on the Item Table is described by a symbolic name (up to 4
characters) and includes information on the mode (e.g., octal, floating point},
the minimum and maximum allowed values, and the CRT display routine for
the parameter. The Item Table is loaded into memeory along with the
Simulation-Control Program; restarting DEBUG clears the Item Table.

In the descriptions below, ITEM represents the symbolic name of a
parameter that has been assembled into the item Table. All DEBUG operations
with simulation parameters are prefixed with the symbol '‘@'. Parameter
values are displayed in the mode specified in the Item Table entry for the
parameter. When a carriage return is typed, DEBUG is restored to its
former mode. The error message '? ?' will be typed in the following

situations:

- after @, if there is no Item Table
- after the command, if ITEM is not on the Table
- after a new value is entered, if that value is outside the allowed
range for the ITEM. In this case the original value is unchanged
and 15 re-displayed by DEBUG.
Command: @ ITEM/
Action;
Display the first data value of ITEM in the proper mode. If
ITEM comprises several data words, successive values may be
examined or altered using the usual DEBUG commands (zomma,

semicolon, and colon),

124

v "
A
=

RN YAr A TNV W

8

4

P R

SRS

Syt v.?\‘,“\ rus) %

LB ew

Ty

A -,
i

AL

b W N)
NI g

Examples:
@XXXX/100. 0 Item XXXX has vaiue 300.
11000/LDA 100 c.r.1.f. Examine location 1000 in

instruction mode.
@XXXX,100.0 50 c. r.1. 1. Change XXXX to 50.

1000 /LDA 100 Instruction mode is restored.

@YYZZ/?22c.x.1.£. Item YYZZ not found on Table.

aYY/1.234; The first data value of YY is
1.234.

174/5.678 6.0; (Note that trailing blanks in the
item name need not be typed.)

175/9.012 10;22c.r.1. £, The second data value is changed

175/9.012 to 6.0 (This value happ=ns to be

stored in location 174.) An
attempt is made to change the third
data value of YY to 10, but this
value exceeds the gpecified
maximum,

Command: (JITEMS
Action:
Call the CRT display routine associated with ITEM. The routine
will return to DEBUG. Error if no routine has been specified.

Command: @ITEM#
Action:
Re..ord ITEM or magretic tape, and return to DEBUG. (The

tape drive will have been specified prior to execution of the
Simulation Control Program.,)

Command: @ITEM*

Action:
Enter ITEM on the Parameter-Stepping Table. Following the
1, DEBUG types '/' and displays the first of the three
successive quantities: starting value, maximum value, step size.

The user may enter or alter any of these quantities. If ITEM is

' an examples, underlined characters are those typed by DEBUG. Carriage
ceturn and line feed, if not obvious, are denoted by c.r. and 1.f, respectively.

125

already on the Stepping Table, DEBUG types the previously entered
starting value; if ITEM is not on the Table, the starting value
and the maximum value are set to 0.

There is space for 5 items on the Stepping Table.f An
error message is typed if an attempt is made to enter a sixth

item,
Example:
@XXXx /0. 1,10,1.6 Item XXXX will be stepped through
the values 1.0,2.6,...,9.0.
@XXXX" /1.0000 ,11 The maximum stepping value for
XXXX is changed to 11.0.
Command: @*
Action:

Clear the entire Parameter Stepping Tatle. (Individual items
cannot be deleted from the table.) Restarting DEBUG clears
both the Stepping Table and the Item Table.

T

Items on the Stepping Table are handled by the Simulation-Control Program
similar to nested DO loops in FORTRAN, with the first item corresponding
to the innermost loop.

126

RN e o - A - ST T el el g A T Al BT N g A iy
A e et T B it e e T LT ke A S o e e PR e e e T L. T T N e T ey G

B. Simulation Tape Editor

Purpose: To copy selected information from Varian 620/i
tapes written by the simulation program onto tapes
in a format suitable for printing on the IBM 360.

Programmer: C. D. Cappello - January 1971

Input Parameters: Input parameter lists are requested by the following
messages tvjcd by the program. If there is more
than one entr» for a parameter list, the entries are
separated by commas. A carriage return terminates
each list; a carriage return with no entries indicates
default values are to be used.

1. INPUT TAPE - tape drive (0-3) holding input tape.
Drive must > specified before program can continue.

2. OUTPUT T, T - output tape and file number.
'S! indicates the listing is to be suppressed.
'N' indicates the next file from a previously
specified tape #nd file number. Default value is
next file if, or: the previous run, an 'N' was typed
or a tape and file number were typed; default value
is suppress listing initially or if, on the previous
run, an 'S' wac typed.

% 3. DATA ITEMS a list of characters identifying

4 items to be printed. Only the first 4 characters

in each entry are recognized. Any number of
items may be specified, Default value is all items,

4. TYPES - a list of type codes to be printed. Default
value is all types.

o 5. PROGRAM NUMBERS - a list of program numbers
: to be printed. Default value is all numbers.

= 6. START AND STOP NOS - only information from
runs between these numbers is printed. Default

k: values are 1 and 77 ‘(‘778.

7. FREQUENCY OF PRINTOUT - this number is used

1 . with reference to the first item in the data item list and
G permits the user t- print a sampling of the tape at
regular intervals. All occurrences of the specified
data up to but not including the second appearance

of the first item in the input item list are printed.
All copying ceases until the first item appears k

s . more times, where k is the number entered for

this paramet-r, Thereafter, copying proceeds as
usual until the next occurrence of the first item and
ceases until the kth occurrence after that, As an
example, suppose X, Y and Z are items that appear
on the input tape in the following order:

X,Y,v,2,2,2,X,Y,Y,2,2,2,X,Y,Y,2,2,2,......

If the frequency is specified as 3, and if X,Y,Z are
inputs in the data item list, the underlined items in the
above sequence are printed. Default value of this
parameter is 1, which indicates that all occurrences
of the specified data are copied.

SR

LA AT

o o

AR
S 40l

ratn cpen e

RO

e,
a——

\

127

P

L2

B Badoe

T i U g TR oS
ST TR REEATE

(I

Notes on Input Parameters:
A. An item is printed out only if it meets all
requirements in 3-7,

B. 'Q' or 'R' may be entered in place of any
numerical input and the program will return to
DEBUG ('Q') or be restarted ('R?).

Output: An output tape is written for the IBM 360 consisting
of one file for each set of input parameters. The
output data may also be displayed on the CRT by
enabling SS2. When a full page has been written the
program waits for the user to t pe the PAGE key
before continuing. A 'Q' or an 'R’ causes the
program to terminate normally and then to quit or
restart,

Format of the Printed Output:
Every run is printed starting on a new page. At the
top of every page is printed the run number and the
label information. Label information must be packed
two ASCII characters per word and must be no more
than 30 words. Items are printed with the item name
on one line and the data on the following lines, The
number of data words per line for an item is specified
in the item table; is zero words per line are specified,
the maximum number of words per line will be printed.
If an error occurred in reading a particular item, an
asterisk will appear before the item name, but the data,
as read, will be printed,

Sense Switch Settings: 1. 8S2 on - directs the data to the CRT as well as
writing it on tape. Its setting may be changed at
any time.

2. SS3 on - instructs the program tu request all input
from the teletype. It must be set prior to the
execution of the program,

Usage: This is a stand alone program requiring an input tape
written by the simulation program. It first requests
input parameters on the CRT or, if SS3 is on, on the
TTY. It searches the input tape for specified data and
copies this information onto the output tape in a format
suitable for printing on the IBM 340. When either the
specified number of files have been searched or the
logical or physical end-of-tape is reached, the program
rewinds the input tape and requests further input. Output
may be viewed on the CRT when SS2 is on,

Error Messages: 1. ? aninvalid character was typed. Re-enter
the argument,

2.%8Z an invalid tape number was entered. Re-enter
the argument.

3. RUN NO. TOO SMALL - the requested starting
run number was smaller than the first run on
the tape. The program is restarted.

4. RUN NOT ON TAPE - the requested starting run

128

Remarks:

Data Types:

number did not occur before the end of tape
file. The program is restarted.

5. WRITE ERROR - either the output tape is offline
or there is no write ring. Only the number
of the output tape must be re-entered before
the program continues,

The simulation tape reading routines with no
modification are assembled into this program.

The following is a description of data types which
must be specified for each item in the item table.

Type 0 - text. Data is interpreted as two ASCII
charzacters per word. A maximum of 130 characters
may be put on a line.

Type 1 - octal, maximum of 10 numbers per line.

Type 2 - fixed point. The position of the binary-
point is specified in the code word, If the binary-
point position is zero, output consists of full-
precision numbers with a maximum of 14 on a line.
Otherwise, output consists of numbers having only
4 significant figures with a maximum of 8 numbers
per line,

Type 3 - binary, maximum of 7 numbers per line.

Type 4 - floating point, maximum of 8 numbers
per line.

Type 5 - double precision fixed point. The position
of the binary point is specified in the code word. A
binary-point position of zer» corresponds to the
binary point between the two words, Output consists
of numbers having 4 significant figures with a
maximum of 8 numbers per line.

Type 6 - double precision integer. Output consists
of full precision integers with a maximum of 10
numbers per line,

129

TG LRI

A
L

g? N
3,5“
F‘

C. Simulation Tape Splicer

Purpose:

Programmer and Date:

Input Parameters:

Sense Switch Settings:

Locations Used:

Usage:

Error Messages:

To copy a number of files written in simulation system
format from one magnetic tape to another. Copying
begins at a specified run on the output tape and the
copied run numbers are adjusted to follow in numerical
order.

C. D. Cappello, June 1971

Output tape number and run number on the output tape
at which copying is to begin. Also the input tape
number and the numbers of the runs on the input tape
at which the copying is to start and stop.

S83 - OFF for operation from the CRT.
ON for operation from the teletype.

- 102368

1008
In response to messages written on the CRT screen
(or the teletype), the user enters the following octal
parameters:

OUTPUT TAPE (0-3)
OUTPUT STARTING RUN NO.
INPUT TAPE (0-3)

START AND STOP NOS.

In response to the Output Starting Run No. message,
the user must type 2 'l'if he wishes to copy onto

a new tape. All files between the starting and
stopping run numbers are copied. If no starting and
stopping numbers are entered, but only a carriage
return is typed, all files on the tape prior to the
logical end of tape file are copied. If only a starting
run number is entered, that one run is copied.

When copying of all specified files is completed, the
program asks for a new input tape. Copying will
continue in sequence on the output tape. In place of
any input parameter, an 'R' may be typed and the
program will be restarted.

When copying iz completed, a 'Q' must be typed in
place of one of the input parameters, At this time
a logical end-of-tape file will be written on the output
tape and the user will return to DEBUG,
?

- an invalid character was typed (parameter

must be re-entered)

>::SZ

- the parameter entered exceeded allowable size

130

e IR LI RIT AR AN IERI S M TR sl P Sl

szl paia o SRt R Fot s

R R Y e R A A e n L et v

Run No. Too Small

- the specified output starting ru:: number is
less than the first run on the tape.

Run Not on Tape

- the specified output starting run number is
greater than one larger than the last run on
the tape.

Error Pos. Output Tape

- an error occurred in positioning the output
tape at the specified run,

Fix Output Tape
- the output tape is offline or not write enabled.

The program pauses for the tape to be fixed;
a 'C!' will continue the program,

Write Error

- an error occurred in writing on the output
tape but the program continues.
End of Output. Tape
- the physical end of tape has been reached.
The program is restarted.
Parity
- a parity error has occurred in reading the
input tape. Five tries are made before the

mesgeage is typed. The program continues with
the data as read.

Input Tape Offline

- the program pauses for the tape to be fixed.
Typing a 'C!' continues the program.

Read Error

- an error other than the above two occurred.
Five attempts are made to read the record before
the program continues with the data as read.

131

o

D, Miscellaneous

The features and routines below are well enough commented in
the listing that a brief description is adequate. For more complete infor-
mation, reference should be made to the listings.,

ITEM TABLE A table which establishes mnemonic identifica-

tion of parameters and data to facilitate
communication among the user, the Simulation
program, and DEBUG.

PROGRAM TABLE A tabtle which determines the sequential order

in which programs are to be executed.

RECORD TABLE A table of item names which are recorded

automatically on tape.
STEPPING TABLE

s T R e s e

A table which allows the Control Program to
vary parameter values as if they were placed
into nested do-loops (see Section V,A),

A feature by which the Control Program can
step parameters when 1) parameters are not
identified in item table, 2) parameter values
are not uniformly increased, or 3) multiple
parameters are to be changed at one time.

SPECIAL STEP

PRATHIO KYFITh

TAPE READ

Special tape-handling routines used by the
TAPE WRITE

Control Program., The read package is double
buffered to minimize the time involved in data
transfers, whereas the write package is single
buffered, since maximum throughput rate is
not needed for recording output data consisting
of input parameters and performance statistics.

MULTICHIP Subroutine to accumulate, store, and plot
Fourier transforms of data which is generated
in chip-length buffers,

DECO EDIT

A special routine which allows the user to edit
out specific parts of a simulation output tape.

132

